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Problems considered

BDDC domain decomposition algorithms for finite element
approximations for a variety of elliptic problems with very
many degrees of freedom.

Mostly for low order finite element methods for self-adjoint
elliptic problems, but also for solvers for isogeometric analysis.

All this work aims at developing preconditioners for the
stiffness matrices. These approximate inverses are then
combined with conjugate gradients or other Krylov space
methods. Aim of our work: Decrease condition numbers.

In recent years, considerable efforts to develop adaptive
methods to select the primal constraints for BDDC algorithms;
they provide the necessary coarse global component. My own
efforts much inspired by a talk by Dohrmann at DD22 and his
joint work with Clemens Pechstein.

Why BDDC? Great performance record, especially for its
deluxe version. No extension theorems required.
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BDDC, finite element meshes, and equivalence classes

BDDC algorithms work on decompositions of the domain Ω of
the elliptic problem into non-overlapping subdomains Ωi , each
often with many tens of thousands of degrees of freedom. In
between the subdomains the interface Γ. The local interface
of Ωi : Γi := ∂Ωi \ ∂Ω. Γ does not cut any elements.

Most of the finite element nodes (element edges or faces) are
interior to individual subdomains while others belong to
several subdomain interfaces. (We might have degrees of
freedom on ∂Ω as well.)
The degrees of freedom on Γ are partitioned into equivalence
classes of sets of indices of the local interfaces Γi to which
they belong. For 3D and nodal finite elements, we have
classes of face nodes, associated with two local interfaces, and
classes of edge nodes and subdomain vertex nodes.
For H(curl) and Nédélec (edge) elements, element edges on
subdomain faces and edges. For H(div) and Raviart-Thomas
elements, degrees of freedom for element faces only.
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For H(curl) and Nédélec (edge) elements, element edges on
subdomain faces and edges. For H(div) and Raviart-Thomas
elements, degrees of freedom for element faces only.

O.B. Widlund BDDC Algorithms with Adaptive Choices of Primal Constraints



BDDC, finite element meshes, and equivalence classes

BDDC algorithms work on decompositions of the domain Ω of
the elliptic problem into non-overlapping subdomains Ωi , each
often with many tens of thousands of degrees of freedom. In
between the subdomains the interface Γ. The local interface
of Ωi : Γi := ∂Ωi \ ∂Ω. Γ does not cut any elements.
Most of the finite element nodes (element edges or faces) are
interior to individual subdomains while others belong to
several subdomain interfaces. (We might have degrees of
freedom on ∂Ω as well.)
The degrees of freedom on Γ are partitioned into equivalence
classes of sets of indices of the local interfaces Γi to which
they belong. For 3D and nodal finite elements, we have
classes of face nodes, associated with two local interfaces, and
classes of edge nodes and subdomain vertex nodes.
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Partial assembly

These equivalence classes play a central role in the design,
analysis, and programming of domain decomposition methods.

The BDDC (Balancing Domain Decomposition by
Constraints) algorithms introduced by Dohrmann in 2003,
following the introduction of the FETI–DP algorithms by
Farhat et al in 2000. These two families are related
algorithmically and have a common theoretical foundation.

These preconditioners are based on using partially
subassembled stiffness matrices assembled from the
subdomain stiffness matrices A(i). We will first look at a
nodal finite element problem in 2D.

The nodes of Ωi ∪ Γi are divided into those in the interior (I )
and those on the interface (Γ). The interface set is further
divided into a primal set (Π) and a dual set (∆).
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Torn 2D scalar elliptic problem
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More on BDDC

The partially subassembled stiffness matrix of this alternative
finite element model is used to define preconditioners; the
resulting linear system is much cheaper to solve than the fully
assembled system. The primal variables provide a global
component of these preconditioners. Also makes all the
matrices encountered invertible.

Much of the work involves using Cholesky’s algorithm for
finite element problems on individual subdomains each on an
individual processor of a parallel or distributed computing
system. The structure of the algorithm is quite simple and has
a modular structure, which allows us to upgrade the
performance if a faster Cholesky solver becomes available.

In a BDDC algorithm, continuity is restored in each step by
computing a weighted average across the interface. This leads
to non-zero residuals at nodes next to Γ. In each iteration a
subdomain Dirichlet solve is used to eliminate them.
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Alternative sets of primal constraints

For scalar 2D, second order elliptic equations and good
coefficients, approach outlined yields condition number
estimates of C (1 + log(H/h))2. Results can be made
independent of jumps in the coefficients, if the interface
average chosen carefully. Edge lemma is central to this theory.

Good numerical results in 2D but for competitive algorithms
in 3D, certain average values (and moments) of the
displacement over individual edges (and faces) should also
take common values across interface Γ. Same matrix structure
as before after a change of variables.
Reliable recipes exist for selecting small sets of primal
constraints for elasticity in 3D, which primarily use edge
averages and first order moments as primal constraints. High
quality PETSc-based codes have been developed and
successfully tested on very large systems. Public domain
software in PETSc, contributed by Stefano Zampini; his codes
allow for more than two levels.
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Schur complements

The BDDC and FETI–DP algorithms can be described in
terms of three product spaces of finite element
functions/vectors defined by their interface nodal values:

ŴΓ ⊂ W̃Γ ⊂WΓ.

WΓ: no constraints; ŴΓ: continuity at every point on Γ; W̃Γ:
common values of the primal variables.

Change variables, explicitly introducing primal variables and
complementary sets of dual displacement variables. Simplifies
presentation and also makes methods more robust.

After eliminating the interior variables, write the subdomain
Schur complements as

S (i) =

(
S

(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
.

Partially subassemble the S (i), obtaining S̃ .
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More details on BDDC

Work with W̃Γ and a set of primal constraints. At the end of
each iterative step, the approximate solution will be made
continuous at all nodal points of the interface; continuity is
restored by applying a weighted average operator ED , which
maps W̃Γ into ŴΓ.

In each iteration, first compute the residual of the fully
assembled Schur complement. Then apply ET

D to obtain
right-hand side of the partially subassembled linear system.
Solve this system and then apply ED .
This last step changes the values on Γ, unless the iteration
has converged, and results in non-zero residuals at nodes next
to Γ.
In final step of iteration step, eliminate these residuals by
solving a Dirichlet problem on each of the subdomains.
Accelerate with preconditioned conjugate gradients.
The condition number of a BDDC algorithm bounded by
‖ED‖S̃ .
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BDDC deluxe

When designing a BDDC algorithm, we have to choose an
effective set of primal constraints and also a recipe for the
averaging across interface.

Traditional averaging recipes found not to work uniformly well
for 3D problems in H(curl): With Dohrmann in DD20 paper and in

CPAM; appeared electronically last month.

Alternative found, also very robust for 3D H(div) problems:
Duk-Soon Oh, OBW, and Clark Dohrmann; CIMS TR2013-951.

Both the H(curl) and H(div) problems have two material
parameters; complicates the design of the average operator.

A paper on isogeometric elements, joint with Beirão da Veiga,
Pavarino, Scacchi, and Zampini in SIAM Sci. Comput. in
2014.

My former student Jong Ho Lee has published a paper on
Reissner-Mindlin plates: SINUM 53(1), 2014.

Work on DG by Dryja, Galvis and Sarkis and Chung and Kim.
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Deluxe scaling

The average operator ED across a face F ⊂ Γ, common to
two subdomains Ωi and Ωj , defined in terms of principal

minors S
(k)
F of the S (k), k = i , j .

The deluxe averaging operator, for F , is then defined by

w̄F := (EDw)F := (S
(i)
F + S

(j)
F )−1(S

(i)
F w

(i)
F + S

(j)
F w

(j)
F ).

The action of (S
(i)
F + S

(j)
F )−1 can be implemented by solving a

Dirichlet problem on Ωi ∪ F ∪ Ωj . Here, F interface between
the two subdomains. This can add significantly to the cost.

Just using skinny domains built from one or two layers of
elements next to the face results in very similar performance.
Not a luxury any more. Not yet fully understood.
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BDDC deluxe

Similar formulas for subdomain edges and other equivalence
classes of interface variables. The operator ED is assembled
from these components.

The core of any estimate for a BDDC algorithm is in terms of
the norm of the average operator ED . By an algebraic
argument known, for FETI–DP, since 2002,

κ(M−1A) ≤ ‖ED‖S̃ .

We can show that the analysis of BDDC deluxe essentially can
be reduced to bounds for individual subdomains.

Arbitrary jumps in two coefficients can often be
accommodated.

Analysis of traditional BDDC requires the use of an extension
theorem; the deluxe version does not.
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BDDC deluxe algebra

Develop estimate for PD := I − ED ; instead of estimating
(RT

F w̄F )TS (i)RT
F w̄F , estimate the S (i)−norm of

RT
F (w

(i)
F − w̄F ). Here RF is the restriction to the face F . By

simple algebra, we find that

w
(i)
F − w̄F = (S

(i)
F + S

(j)
F )−1S

(j)
F (w

(i)
F − w

(j)
F ).

Here S
(i)
F := RFS

(i)RT
F .

More algebra gives:

(RT
F (w

(i)
F − w̄F ))TS (i)(RT

F (w
(i)
F − w̄F )) =

(w
(i)
F −w

(j)
F )TS

(j)
F (S

(i)
F +S

(j)
F )−1S

(i)
F (S

(i)
F +S

(j)
F )−1S

(j)
F (w

(i)
F −w

(j)
F ).
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Parallel sums

Add contribution from Ωj . Following Clemens Pechstein, we
find that the relevant expression of the energy is

(w
(i)
F − w

(j)
F )T (S

(i)−1

F + S
(j)−1

F )−1(w
(i)
F − w

(j)
F ).

We will use the notation,

A : B := (A−1 + B−1)−1,

and similarly

A : B : C := (A−1 + B−1 + C−1)−1, etc .,

for parallel sums of symmetric matrices, which are at least
positive semi-definite.

Trivially A : B ≤ A and A : B ≤ B.
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Continued

It then easily follows that,

(w
(i)
F − w

(j)
F )T (S

(i)
F : S

(j)
F )(w

(i)
F − w

(j)
F )

≤ 2(w
(i)
F −wΠ)TS

(i)
F (w

(i)
F −wΠ)+2(w

(j)
F −wΠ)TS

(j)
F (w

(j)
F −wΠ),

where w
(k)
F∆ = w

(k)
F − wΠ and wΠ is an arbitrary element of

the primal space.

Each of the terms local to only one subdomain.

Now remains to estimate w
(i)T
F∆ S

(i)
F w

(i)
F∆ by w

(i)T
F∆ S̃

(i)
F w

(i)
F∆,

where the latter represents the minimum norm extension.

This can be done by using a face lemma in 3D, or an edge
lemma in 2D if we have nice coefficients in each subdomain
and the subdomains are polytopes.
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Eigenvalues of S
(i)−1
E (S

(i)
E − S̃

(i)
E ) for 2D problems
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Figure : H/h = 240, ρ = 1, and irregular subdomains (METIS).
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Adaptive choices of primal space

Consider a problem in 2D. We can then generate elements for
the primal space for an edge by solving a generalized
eigenvalue problem

S̃
(i)
F : S̃

(j)
F φ = λS

(i)
F : S

(j)
F φ.

Primal constraints are generate by eigenvectors corresponding
to the smallest eigenvalues.

We find that the eigenvalues converge to 1 quite rapidly even
for problems with large changes in the coefficients inside
subdomains. Primal space does not grow a great deal and the
iteration count can decline considerably.
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An edge common to three subdomains

The discussion that follows can be extended straightforwardly to
equivalence classes with more than three elements.

We need an expression for the energy related to I − ED and a
good generalized eigenvalue problem to select primal
constraints.

The relevant energy can be written in terms of w
(i)
E − w

(j)
E ,

etc., and operators of the form

T
(i)
E := S

(i)
E : (S

(j)
E + S

(k)
E ),

etc.

Can we estimate T
(i)
E by S

(i)
E : S

(j)
E : S

(k)
E ? If so, we could

then choose a generalized eigenvalue problem with the

matrices S
(i)
E : S

(j)
E : S

(k)
E and S̃

(i)
E : S̃

(j)
E : S̃

(k)
E . But such an

estimate does not hold without additional assumptions.
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Recipes

Several generalized eigenvalue problems have been quite successful
but some lack full theoretical justification.

Simone Scacchi has used what would correspond to the

matrices S
(i)
E : S

(j)
E : S

(k)
E and S̃

(i)
E + S̃

(j)
E + S̃

(k)
E for difficult,

very ill-conditioned problems arising in IGA problems.

Stefano Zampini has used S
(i)
E : S

(j)
E : S

(k)
E and

S̃
(i)
E : S̃

(j)
E : S̃

(k)
E successfully for subdomain edges and 3D

H(curl) problems. (Also a lot of success with
H(div)−problems; only face constraints.)

More of a justification can be given if we choose the matrices

T
(i)
E + T

(j)
E + T

(k)
E and S̃

(i)
E : S̃

(j)
E : S̃

(k)
E for the generalized

eigenvalue problem to determine good primal constraints for
subdomain edges in 3D. But are the spectrum of this
generalized eigenvalue good?

This experimental work is joint with Juan G. Calvo.
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E for difficult,

very ill-conditioned problems arising in IGA problems.

Stefano Zampini has used S
(i)
E : S

(j)
E : S

(k)
E and

S̃
(i)
E : S̃

(j)
E : S̃

(k)
E successfully for subdomain edges and 3D

H(curl) problems. (Also a lot of success with
H(div)−problems; only face constraints.)

More of a justification can be given if we choose the matrices

T
(i)
E + T

(j)
E + T

(k)
E and S̃

(i)
E : S̃

(j)
E : S̃

(k)
E for the generalized

eigenvalue problem to determine good primal constraints for
subdomain edges in 3D. But are the spectrum of this
generalized eigenvalue good?

This experimental work is joint with Juan G. Calvo.
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subdomain edges in 3D. But are the spectrum of this
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This experimental work is joint with Juan G. Calvo.
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Numerical experiments: Scalability, H/h = 8

Cubic subdomains

ρ N Corners Wire Average NE
I (κ) |WΠ| I (κ) |WΠ| I (κ) |WΠ|

1 33 12(14.9) 8 6(1.6) 260 12(13.9) 44 36
43 17(16.6) 27 7(1.7) 783 17(15.6) 135 108
53 24(17.2) 64 7(1.8) 1744 24(16.1) 304 240
63 26(17.6) 125 8(1.8) 3275 25(16.5) 575 450

R 33 23(42.9) 8 10(2.5) 260 21(22.9) 44 36
43 34(77.9) 27 12(2.9) 783 25(16.8) 135 108
53 52(83.4) 64 12(2.9) 1744 34(23.1) 304 240
63 68(107) 125 13(3.0) 3275 37(23.5) 575 450
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Numerical experiments: Scalability, H/h = 8

Cubic subdomains

ρ N Adapt. 95% Adapt. 50% Adap. 25% NE
I (κ) |WΠ| I (κ) |WΠ| I (κ) |WΠ|

1 33 9(2.3) 92 9(2.3) 92 7(1.6) 116 36
43 9(2.2) 351 9(2.3) 351 7(1.7) 405 108
53 20(6.7) 564 20(6.7) 566 19(2.0) 665 240
63 19(6.7) 1571 19(6.7) 1574 19(2.1) 1727 450

R 33 17(22.9) 92 14(4.5) 98 14(4.5) 113 36
43 23(14.9) 213 22(14.6) 238 22(13.5) 269 108
53 22(11.1) 655 22(11.0) 703 22(10.9) 782 240
63 23(9.8) 1499 22(9.0) 1573 21(7.9) 1679 450
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Numerical experiments: Scalability, H/h = 8

METIS subdomains

ρ N Corners Wire Average NE
I (κ) |WΠ| I (κ) |WΠ| I (κ) |WΠ|

1 33 17(7.0) 51 8(1.6) 532 13(3.6) 154 126
43 20(7.4) 164 8(1.6) 1594 14(4.0) 516 389
53 22(8.2) 417 8(1.7) 3624 18(5.7) 1225 951

R 33 21(15.5) 51 10(2.3) 532 18(7.3) 169 126
43 27(14.7) 164 11(2.6) 1594 20(8.5) 516 389
53 34(19.5) 417 12(2.7) 3624 27(11.1) 1265 951
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Numerical experiments: Scalability, H/h = 8

METIS subdomains

ρ N Adapt. 95% Adapt. 50% Adap. 10% NE
I (κ) |WΠ| I (κ) |WΠ| I (κ) |WΠ|

1 33 13(3.7) 161 13(3.6) 166 10(2.2) 258 126
43 14(3.7) 568 14(3.6) 578 10(2.4) 821 389
53 19(5.6) 1236 19(5.5) 1245 16(2.9) 1685 951

R 33 18(7.0) 161 18(8.0) 173 15(4.8) 225 126
43 20(7.7) 519 20(7.5) 530 16(5.0) 649 389
53 25(8.8) 1268 25(8.6) 1336 22(5.2) 1568 951
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Final remarks

Here, we have focused on an effort to work with only one
generalized eigenvalue problem for equivalence classes with
more than two subdomains such as for subdomain edges in
3D.

We could also use several generalized eigenvalue problems and
sequentially increase the primal space; that approach has been
explored in a recent paper by Hyea Hyun Kim and Eric Chung.

A lot of experimental work will be required to settle these
issues.
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