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Why Domain Decomposition Methods ?

We want to solve high-frequency time-harmonic wave problems.

We also want to use the finite element method.

Unfortunately, the resulting matrices are hard to handle.
Large.
Non-Hermitian.
Highly indefinite.

Direct solvers do not scale.

Iterative solvers do not converge well.

Solution: Domain Decomposition Method!
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Optimized Schwarz algorithm

We start by splitting the computational domain into sub-domains Ωi .
And we apply the following iterative scheme:



curl curl ek
i − k2ek

i = 0 in Ωi ,
γT(ek

i ) = − γT(einc) on Γi ,

γt(curl ek
i ) + B

[
γT(ek

i )
]

= 0 on Γ∞i ,

γt(curl ek
i ) + S

[
γT(ek

i )
]

= gk−1
ij on Σij ,

gk
ij = −gk−1

ji + 2S
[
γT(ek

j )
]

on Σij .with:
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gk
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ji + 2S
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It can be recast into the following linear system:

gk = A
[
gk−1

]
+ b (I − A)g = b.
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Transmission operators — Zeroth and second orders

Zeroth-order: [Després, 1992]

S
[
γT (e)

]
= k γT (e).

Optimized second-order: [Dolean, Gander and Gerardo-Giorda, 2009]

[Rawat and Lee, 2010]

[Dolean, Gander, Lanteri, Lee and Peng, 2015]

S
[
γT (e)

]
= k

[
I + β

k2 gradΣ divΣ
]−1[
I − α

k2 curlΣ curlΣ
][
γT (e)

]
.

• Where α and β are chosen such that optimal convergence rate is
obtained.
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Transmission operators — On-surface radiation condition

On-surface radiation condition: [El Bouajaji, Antoine and Geuzaine, 2014]

S
[
γT (e)

]
= k

[
I + gradΣ

1
k2
ε

divΣ− curlΣ
1
k2
ε

curlΣ
]−1/2

[
I − curlΣ

1
k2
ε

curlΣ
][
γT (e)

]
.

• With kε = k + ε, and ε chosen to reach the optimal convergence rate.

• The square-root operator is non-local.

• It is thus localized using Padé decomposition of order Np,
with a rotation of the branch-cut α:

(I + ∆)1/2 ≈ R0(α)−
Np∑
l=1

Al (α)
Bl (α)

[
I + Bl (α)∆

]−1
.

Where R0(α), Al(α) and Bl(α) are the Padé coefficients.

And ∆ = gradΣ
1
k2

ε
divΣ − curlΣ

1
k2

ε
curlΣ.
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Transmission operators — Benchmark

Let us now study the convergence rate of the previous operators.

Scattering by a sphere taken as test case.

n1

Ω0

R0

Σ
Ω1

n0
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Transmission operators — Benchmark: convergence

Convergence history for different transmission operators.
No FEM used — 2 sub-domains — No Padé used.
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Transmission operators — Benchmark: Padé orders

Convergence history for different Padé orders.
No FEM used — 2 sub-domains.
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Transmission operators — Benchmark: k variations

Iteration count for different wavenumbers.
FEM used — 5 sub-domains.
20 mesh elements per wavelength.
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Transmission operators — Benchmark: sub-domains

Iteration count for different number of sub-domains.
FEM used — 5 sub-domains.
20 mesh elements per wavelength.
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Preconditioner

Even with the best possible transmission operator,
the Schwarz algorithm requires O(N) iterations.
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Preconditioner — Intuitive explanation

The information is propagated only between neighbour sub-domains.
• Let us consider a 1D waveguide with 10 sub-domains.

We need to propagate information globally.
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Preconditioner — A simple case

For simplicity, the iteration operator is renamed.

(I − A)g = b⇐⇒ Fg = b

For a simple waveguide with no internal reflections, F is known:

FA =



I E f
2 Bb

2
Eb
1 I

I E f
3

. . .
Bf
2 Eb

2 I

. . .
. . .

Bb
N−1

I E f
N

Bf
N−1 Eb

N−1 I



Moreover F−1A is easy to compute explicitly.

F−1A can be a good preconditioner!
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Preconditioner — Double sweep

Constructing explicitly F−1A is not needed.
For iterative solvers only the application of F−1A is needed.
The following recursion can be used:

h = F−1A r =



{
h2,1 = r2,1,

hi+1,i = ri+1,i − Bf
i hi,i−1,

Forward sweep

{
hN−1,N = rN−1,N ,

hi−1,i = ri−1,i − Bb
i hi,i+1.

Backward sweep

Double-sweep.

Information is accumulated from sub-domain to sub-domain.

Ω1 Ω2 Ω3 Ω4

Unfortunately this is a sequential scheme.
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Preconditioner — Benchmark

2D waveguide benchmark — TE mode.

ω = 20π ω = 40π
N 5 10 25 50 100 5 10 25 50 100

0th order + Precond. 3 3 4 4 4 3 3 4 4 4
0th order 8 18 48 98 198
2nd order+ Precond. 3 3 4 4 4 3 3 3 3 4
2nd order 8 18 46 98 201
OSRC + Precond. 3 3 3 4 4 3 3 4 4 8
OSRC 8 18 48 119 239

Preconditioner is robust with respect to ω and N variations.
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Preconditioner — Partial sweeps

How to circumvent the sequential nature of the preconditioner?

Ω1 Ω4bΩ2 Ω3 Ω4a Ω5 Ω6 Ω7

Preconditioner applied on independent blocks.
Equivalent to a Block-Jacobi applied to F−1A .
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Preconditioner — Benchmark: setup

Marmousi benchmark.
Pressure field on a [9× 3] [km] domain.
Domain decomposed into 256 sub-domains.

112 Double sweep preconditioner for Schwarz methods

The Marmousi model

1500 3500 5500

Velocity c(x, y)

Figure 3.17: Velocity profile of the Marmousi model. Dimensions (in meters) are
[0,9192]£ [0,°2904].

The Marmousi model is a synthetic 2d acoustic model that reproduces the com-
plex velocity profile of a slice of earth. It features a wide range of speeds, from 1500
m/s to 5500 m/s, with many layers an normal faults as depicted on Figure 3.17.
It has become a classic test case for benchmarking seismic inversion codes. We
will simulate the propagation of the time-harmonic acoustic waves produced by
a point source located at coordinates (6200,°2300) as was done in [169], so both
methods can be compared.

We solve the Helmholtz equation with Sommerfeld boundary conditions on all
sides except the top side where we impose a homogeneous Neumann boundary
condition; we will also consider the case of Sommerfeld conditions on all sides,
since we assume that this situation was used in [169]. We will also test the meth-
ods in a similar domain with an homogeneous medium; Figure 3.18 shows typical
solutions in all these configurations.

In the following, we report the results of our experiments in tables for each of
the configurations, with decompositions into 16, 64 and 256 domains. We have
tested two different transmission conditions: the GIBC(2) and the IBC(0), which
is the most simple one; each case has been run twice, with decompositions into
vertical and horizontal layers. The tables present the number of iterations for each
run to converge with a relative residual decrease of 10°3, with a maximum num-
ber of iterations of 1000. Values in parentheses are an estimation of the normalized
time required to reach convergence when using as many CPUs as there are subdo-
mains. The time unit is the time to solve a single subproblem. Hence, these values
cannot be directly compared for different decompositions or frequencies.

3.4. Numerical results 113

S S

S

N

(a)

S S

S

S

(b)

S S

S

N

(c)

S S

S

S

(d)

Figure 3.18: Solutions at ! = 100º: (a) marmousi model with Neumann condition on
top; (b) marmousi model with absorbing condition on top; (c) homogeneous model
(c(x, y) = 3500) with Neumann condition on top; (d) homogeneous model with Sommer-
feld condition on top. The reflections produced by the Neumann condition are clearly
visible.
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Preconditioner — Benchmark: iteration count

Iteration count.
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Iteration count stable for sufficiently large sweeps.

16 blocks of 16 sub-domains

1 block of 256 sub-domains

21



Outline

1 Optimized Schwarz algorithm

2 Transmission operators

3 Preconditioner

4 High-order FEM discretizations

5 Conclusion

22



High-order FEM discretizations

Time-harmonic wave problems are known to require very fine meshes.

The situation can be improved using high-order FEM discretizations.

1 What happens to the DDM iteration count?
2 What happens when we mix orders for ei and g?

Tests on a waveguide with different orders and mesh sizes.
On-surface radiation condition is used.
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High-order FEM discretizations — Iteration count

What happens to the iteration count?
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High-order FEM discretizations — Iteration count

What happens to the iteration count?

Order Mesh size Accuracy Count

1 16 9.9× 10−2 41
2 4 9.8× 10−2 42

2 16 7.7× 10−4 39
4 4 7.5× 10−4 37

3 16 2.1× 10−5 34
4 8 1.9× 10−5 31
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High-order FEM discretizations — Mixing orders

What happens when we mix orders for ei and g?
Unknown ei discretized with an order 4 basis.
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The DDM is no longer equivalent to the non-DDM problem.
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Outline

1 Optimized Schwarz algorithm

2 Transmission operators

3 Preconditioner

4 High-order FEM discretizations

5 Conclusion
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Conclusion I

On-surface radiation condition combined with Padé localization
Offers high linear solver convergence speed.
Robust with respect to a k increase.

Double sweep
Limits the iteration count increase with sub-domains.

High-order FEM
Iteration count decreases when accuracy is increased.
Accuracy decreases when mixing orders for ei and g. . .
. . . but, iteration count decreases also.
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Conclusion II

Open-source implementation available for testing!

Go to http://onelab.info.
Download the pre-compiled GetDDM code.
• Available for MS Windows, MacOS X, and Linux.
• Makes use of Gmsh and GetDP codes.

Open Gmsh executable.
Open ./models/ddm_waves/main.pro.
Click Run.

High-order version will come soon.

Thank you for your attention!
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