

A TDNNS-FETI method for compressible and almost incompressible elasticity

Astrid Pechstein¹ & <u>Clemens Pechstein²</u>

¹ Institute of Computational Mechanics Johannes Kepler University, Linz (A)

² Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences, Linz (A)

DD22, Lugano, September 16, 2013

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

Overview

TDNNS (Tangential Displacement - Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

Linear elasticity

$$\Omega \subset \mathbb{R}^d$$
, $d = 2$ or 3

$$\begin{aligned} -\operatorname{div} \underline{\sigma} &= \mathbf{f} & \text{in } \Omega \\ \underline{\sigma} &= \underline{\mathbf{D}} \underline{\varepsilon}(\mathbf{u}) & \text{in } \Omega, & \text{where } \underline{\varepsilon}(\mathbf{u}) = \frac{1}{2} (\nabla \mathbf{u} + \nabla^{\top} \mathbf{u}) \\ \mathbf{u} &= \mathbf{u}_D & \text{on } \Gamma_D \\ \sigma_n &= \mathbf{t}_N & \text{on } \Gamma_N \end{aligned}$$

Hooke's law:

$$\underline{\mathbf{D}}\underline{\boldsymbol{\varepsilon}} = \frac{E}{(1+\nu)}\underline{\boldsymbol{\varepsilon}} + \frac{E\nu}{(1+\nu)(1-2\nu)}\operatorname{tr}(\underline{\boldsymbol{\varepsilon}})\boldsymbol{\boldsymbol{I}}$$

for d = 2: plane strain or plane stress

TDNNS Formulation A. Pechstein & J. Schöberl '11, '12

Mixed TDNNS finite element (P^1 , here 2D)

Tangential continuous Displacement (Nédélec II)

symmetric Normal-Normal continuous Stress

Discrete variational formulation

$$\sum_{T} \int_{T} (\operatorname{div} \underline{\sigma} + \mathbf{f}) \cdot \mathbf{v} \, dx \qquad + \sum_{F} \int_{F} [\![\sigma_{nt}]\!] \cdot \mathbf{v}_{t} \, ds = g_{2} \qquad \forall \mathbf{v}$$
$$\sum_{T} \int_{T} (\underline{\mathbf{D}}^{-1} \underline{\sigma} - \underline{\varepsilon}(\mathbf{u})) : \underline{\tau} \, dx + \sum_{F} \int_{F} [\![u_{n}]\!] \tau_{nn} \, ds = g_{1} \qquad \forall \underline{\tau}$$

Stability & Convergence:

- Discrete inf-sup stability
- Optimal error estimates

But:

Saddle point system

Hybridized TDNNS Formulation

Normal-normal continuity of stresses is broken and reenforced facet-wise by Lagrange multipliers, these approximate normal displacements.

Benefits:

algebraically equivalent to previous system

Hybridized TDNNS Formulation

Normal-normal continuity of stresses is broken and reenforced facet-wise by Lagrange multipliers, these approximate normal displacements.

Benefits:

- algebraically equivalent to previous system
- ► stresses local ~→ static condensation
- condensed system is SPD

$$\underline{\mathbf{K}}\mathbf{U} = \mathbf{F} \qquad \mathbf{U} \stackrel{\frown}{=} \begin{vmatrix} \mathbf{u} \\ \overline{u}_n \end{vmatrix}$$

Why use TDNNS?

Single framework, stable w.r.t.

- volume locking (more later on)
- shear locking

DG-like method, lives up to the motto

Relax as much as you can, but never lose stability!

TDNNS (Tangential Displacement - Normal-Normal Stress)

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

Motivation I – Solver

Astrid's PhD thesis '09 Additive Schwarz preconditioner for high order (hybridized) system

- Iowest order block (direct)
- overlapping blocks associated to edges, facets, elements
- optimal in h and polynomial degree

But up to now no scalable lowest order TDNNS-solver available!

Motivation II – Symbolic Study

Victorița Dolean, DD20 plenary talk

DD on PDE level

T. Cluzeau, V. Dolean, F. Nataf, and A. Quadrat '12

two subdomains, $\Gamma =$ symmetry axis

scalar PDE −Δu = f
 coupling pair (u, ∂u/∂n)
 Neumann-Neumann preconditioner is exact

Motivation II – Symbolic Study

Victorița Dolean, DD20 plenary talk

DD on PDE level

T. Cluzeau, V. Dolean, F. Nataf, and A. Quadrat '12

two subdomains, Γ = symmetry axis

- ► scalar PDE $-\Delta u = f$ coupling pair $(u, \frac{\partial u}{\partial n})$ Neumann-Neumann preconditioner is exact
- ► elasticity -div(<u>σ</u>(u)) = f coupling pair (u, <u>σ</u>_n(u))

Neumann-Neumann preconditioner is NOT exact!

Motivation II – Symbolic Study

Victorița Dolean, DD20 plenary talk

DD on PDE level

 $\Omega^{(1)}$

T. Cluzeau, V. Dolean, F. Nataf, and A. Quadrat '12

two subdomains, Γ = symmetry axis

► scalar PDE -∆u = f coupling pair (u, ∂u/∂n) Neumann-Neumann preconditioner is exact

► elasticity
$$-\operatorname{div}(\underline{\sigma}(\mathbf{u})) = \mathbf{f}$$

coupling pair $\left(\begin{bmatrix} \mathbf{u}_t \\ \sigma_{nn}(\mathbf{u}) \end{bmatrix}, \begin{bmatrix} \sigma_{nt}(\mathbf{u}) \\ u_n \end{bmatrix} \right)$
Neumann-Neumann preconditioner is exact

symbolic approach Smith factorization OreMorphisms

Existing Work – FETI for mechanics

Compressible elasticity

- Farhat & Roux '94 etc. FETI (original)
- Farhat, Lesoinne, LeTallec, Pierson & Rixen '01 FETI-DP (original)
- Dostál, Horák & R. Kučera '06 TFETI
- Klawonn & Widlund '06 FETI-DP (3D coarse space)
- Klawonn, Rheinbach & Widlund '08 FETI-DP (2D, irregular interface)

Incompressible Stokes

- Li & Widlund '06 BDDC (primal pressure dofs, quasi-optimal)
- Kim & Lee '10 FETI-DP (no primal pressure dofs, suboptimal)

Almost incompressible elasticity

- Dohrmann & Widlund '09 OS ("full" coarse space)
- Dohrmann & Widlund '09 hybrid OS-IS (reduced coarse space)
- Pavarino, Widlund & Zampini '10 BDDC (reduced coarse space)
- Gippert, Rheinbach & Klawonn '12 FETI-DP unresolved incompressible inclusions

Your paper here & even more at this conference!

We won't compare TDNNS-FETI with the above FETI(-DP) methods but show what one can do when one has chosen TDNNS as discretization.

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

one-level (T)FETI for hybridized TDNNS

Saddle point formulation

$$\begin{bmatrix} \underline{\mathbf{K}}^{(1)} & \mathbf{0} & \underline{\mathbf{B}}^{(1)\top} \\ & \ddots & \vdots \\ \mathbf{0} & \underline{\mathbf{K}}^{(N)} & \underline{\mathbf{B}}^{(N)\top} \\ \underline{\mathbf{B}}^{(1)} & \dots & \underline{\mathbf{B}}^{(N)} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{U}^{(1)} \\ \vdots \\ \mathbf{U}^{(N)} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{F}^{(1)} \\ \vdots \\ \mathbf{F}^{(N)} \\ \mathbf{0} \end{bmatrix}$$

Kernel property

$$\mathsf{ker}(\mathbf{\underline{K}}^{(i)}) = \mathsf{range}(\mathbf{\underline{R}}^{(i)})$$

Elimination of $\mathbf{U}^{(i)}$

$$\begin{bmatrix} \underline{\mathbf{B}} \underline{\mathbf{K}}^{\dagger} \underline{\mathbf{B}} & -\underline{\mathbf{G}} \\ \underline{\mathbf{G}}^{\top} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\lambda} \\ \boldsymbol{\xi} \end{bmatrix} = \begin{bmatrix} \mathbf{d} \\ \mathbf{e} \end{bmatrix}$$

$$\underline{\mathbf{G}} := \underline{\mathbf{B}} \, \underline{\mathbf{R}}$$

 $\mathbf{U} = \underline{\mathbf{K}}^{\dagger} (\mathbf{F} - \underline{\mathbf{B}}^{\top} \boldsymbol{\lambda}) + \underline{\mathbf{R}} \boldsymbol{\xi}$

by generalized inverse $\mathbf{K}^{(i)\dagger}$

rigid body modes

Projection method

$$\underline{\mathsf{P}}_{\underline{\mathsf{Q}}} := \underline{\mathsf{I}} - \underline{\mathsf{Q}} \, \underline{\mathsf{G}} (\underline{\mathsf{G}}^{\top} \underline{\mathsf{Q}} \underline{\mathsf{G}})^{-1} \underline{\mathsf{G}}^{\top}$$

RICAM

OAW

One-level (T)FETI with scaled Dirichlet preconditioner

Yet to be specified:

- scalings in $\underline{\mathbf{B}}_{D} = [\underline{\mathbf{D}}^{(1)}\underline{\mathbf{B}}^{(1)}| \dots |\underline{\mathbf{D}}^{(N)}\underline{\mathbf{B}}^{(N)}]$
- matrix Q

Choice of Scalings – 2D

Scalings in $\underline{\mathbf{B}}_D$

diagonal entry of $\underline{\mathbf{D}}^{(i)}$ at multiplier linking (i,j)			
$\frac{1}{2}$	$\frac{E^{(i)}}{E^{(i)}+E^{(j)}}$	$\frac{\mathcal{K}_{\text{diag,max}}^{(i)}}{\mathcal{K}_{\text{diag,max}}^{(i)} + \mathcal{K}_{\text{diag,max}}^{(j)}}$	
multiplicity scaling	coefficient scaling	stiffness scaling	

Choices of $\underline{\textbf{Q}}$

or using scaled stiffness entries

Assumption on degrees of freedom

$$\int_{e} \mathbf{v} \cdot \mathbf{t} \, ds \qquad \frac{1}{|e|} \int_{e} (\mathbf{v} \cdot \mathbf{t}) s \, ds \qquad |e| \, \overline{v}_{n|e}(e_1) \qquad |e| \, \overline{v}_{n|e}(e_2)$$

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

technical

Condition Number Estimate

Assumptions

- ► *d* = 2
- triangular mesh
- $E_{|\Omega^{(i)}} \approx E^{(i)} = \text{const}$
- subdomains = compounds of coarse elements can be relaxed
- subdomain meshes quasi-uniform can be relaxed

Theorem (AP & CP)

For coefficient or stiffness scaling, and $\underline{\mathbf{Q}} = \underline{\mathbf{M}}^{-1}$ or $\underline{\mathbf{Q}} = \underline{\mathbf{Q}}_{diag}$

$$\kappa_{(T)FETI} \leq C \left(1 + \log(\frac{H}{h})\right)^2$$

C independent of H, h, and jumps in E.

Discrete norms

Energy norm is equivalent to the DG-like (semi)norm

$$|\mathbf{v},\overline{v}_n|^2_{\mathbf{H}(\underline{\varepsilon},\Omega,\mathcal{T}_h)} := \sum_{\mathcal{T}} \left(\|\underline{\varepsilon}(\mathbf{v})\|^2_{\underline{\mathbf{L}}^2(\mathcal{T})} + h_{\mathcal{T}}^{-1} \|\mathbf{v}\cdot\mathbf{n}-\overline{v}_n\|^2_{L^2(\partial\mathcal{T})} \right)$$

or (via Korn-type inequality, Brenner '04)

$$|\mathbf{v},\overline{v}_{n}|^{2}_{\mathbf{H}^{1}(\Omega,\mathcal{T}_{h})} := \sum_{\mathcal{T}} \left(|\mathbf{v}|^{2}_{\underline{\mathbf{H}}^{1}(\mathcal{T})} + h_{\mathcal{T}}^{-1} \|\mathbf{v}\cdot\mathbf{n}-\overline{v}_{n}\|^{2}_{L^{2}(\partial\mathcal{T})} \right)$$

"L²-norm"

$$\|\mathbf{v},\overline{\mathbf{v}}_n\|_{\mathbf{L}^2(\Omega,\mathcal{T}^h)}^2 := \|\mathbf{v}\|_{\mathbf{L}^2(\Omega)}^2 + \sum_{T} h \|\overline{\mathbf{v}}_n\|_{L^2(\partial T)}^2$$

Two Transformations

Features

- preserve continuous functions, in particular rigid body motions
- $\blacktriangleright \hspace{0.1 cm} H^1 \hspace{-0.5 cm} \text{-stable} \hspace{0.5 cm} |\mathcal{X}(\mathbf{v},\overline{v}_n)|_{\mathbf{H}^1(\Omega)} \lesssim |\mathbf{v},\overline{v}_n|_{\mathbf{H}^1(\Omega,\mathcal{T}_h)} \hspace{0.5 cm} |\mathcal{Y}\widehat{\mathbf{v}}|_{\mathbf{H}^1(\Omega,\mathcal{T}_h)} \lesssim |\mathbf{v}|_{\mathbf{H}^1(\Omega)}$
- ► L^2 -stable $\|\mathcal{X}(\mathbf{v}, \overline{v}_n)\|_{L^2(\Omega)} \lesssim \|\mathbf{v}, \overline{v}_n\|_{L^2(\Omega, \mathcal{T}_h)} = \|\mathcal{Y}\widehat{\mathbf{v}}\|_{L^2(\Omega, \mathcal{T}_h)} \lesssim \|\mathbf{v}\|_{L^2(\Omega)}$
- $ho~\lesssim$ involves only shape-regularity constants
- also works subdomain-wise / patch-wise

RICAM

Main Idea of constructing $\hat{\mathbf{v}} := \mathcal{X}(\mathbf{v}, \overline{v}_n)$

$$|\mathbf{v}, \overline{v}_n|^2_{\mathbf{H}^1(\Omega, \mathcal{T}_h)} = \sum_{\mathcal{T}} |\mathbf{v}|^2_{\mathbf{H}^1(\mathcal{T})} + h_{\mathcal{T}}^{-1} \|\mathbf{v} \cdot \mathbf{n} - \overline{v}_n\|^2_{L^2(\partial \mathcal{T})}$$

Lift of Existing Tools

Cut-off Estimate (Edge Lemma)

$$|\Theta_{\mathcal{E}^{(ij)}}(\mathbf{v},\overline{v}_n)|^2_{\mathbf{H}^1(\Omega^{(i)},\mathcal{T}_h)}\ \lesssim\ (1+\log(rac{H^{(i)}}{h^{(i)}}))^2\,\|\mathbf{v},\overline{v}_n\|^2_{\mathbf{H}^1(\Omega^{(i)})}$$

Discrete Subdomain Extension

$$\begin{aligned} & \|\mathbb{E}^{(i\to j)}(\mathbf{v},\overline{v}_n)\|_{\mathsf{H}^1(\Omega^{(j)},\mathcal{T}_h)}^2 \lesssim \|\mathbf{v},\overline{v}_n\|_{\mathsf{H}^1(\Omega^{(j)},\mathcal{T}_h)}^2 \\ & \|\mathbb{E}^{(i\to j)}(\mathbf{v},\overline{v}_n)\|_{\mathsf{L}^2(\Omega^{(j)},\mathcal{T}_h)}^2 \lesssim \|\mathbf{v},\overline{v}_n\|_{\mathsf{L}^2(\Omega^{(j)},\mathcal{T}_h)}^2 \end{aligned}$$

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

1) Compressible Case, Homogeneous Material

plane strain, $\nu = 0.3$, $E = 2 \cdot 10^5 \text{ N/mm}^2$

64 subdomains, multiplicity scaling, $\mathbf{Q} = \mathbf{I}$

	FETI		TFETI		
H/h	cond	iter	cond	iter	
2	15.37	22	3.24	15	
4	19.82	28	5.34	20	
8	25.00	34	8.43	25	
16	30.03	38	11.84	29	
32	35.19	42	15.59	33	
64	40.65	47	19.65	36	
	168 coarse	e dofs	192 coars	e dofs	

PCG tolerance 10^{-8} (relative)

2) Compressible Case, Heterogeneous Material

Almost Incompressible Case – Stabilization

Consistent stabilization

Astrid's PhD thesis '09

$$\sum_{T} \int_{T} (\operatorname{div} \underline{\sigma} + \mathbf{f}) \cdot \mathbf{v} \, dx + \sum_{F} \int_{F} [\![\sigma_{nt}]\!] \cdot \mathbf{v}_{t} \, ds = g_{2} \quad \forall \mathbf{v}$$
$$\sum_{T} \int_{T} (\underline{\mathbf{D}}^{-1} \underline{\sigma} - \underline{\varepsilon}(\mathbf{u})) : \underline{\tau} \, dx + \sum_{F} \int_{F} \tau_{nn} [\![u_{n}]\!] \, ds + \sum_{T} h_{T}^{2} \int_{T} (\operatorname{div} \underline{\sigma} + \mathbf{f}) \cdot \operatorname{div} \underline{\tau} \, dx = g_{1} \quad \forall \underline{\tau}$$

In hybridized form \rightsquigarrow penalizes volume changes: $+\frac{\lambda}{|\mathcal{T}|} \left| \int_{\partial \mathcal{T}} \overline{v}_n \, ds \right|^2$ Stability & Convergence uniform for $\nu \to 1/2$

3) Almost Incompressible Case

 $H/h \approx 32$

4) Irregular Subdomains

$$\nu = 0.3$$
 $E = 2 \cdot 10^5 \text{ N/mm}^2$

64 subdomains, multiplicity scaling, $\underline{\mathbf{Q}} = \underline{\mathbf{I}}$

regular	FETI		TFETI	
	cond	iter	cond	iter
cont. P1	23.8	31	7.0	23
TDNNS	35.2	42	15.6	33

METIS	FETI		TFETI	
	cond	iter	cond	iter
cont. P1	75.2	49	34.1	43
TDNNS	113.6	67	90.7	64

Summary

One-level (T)FETI method for hybridized TDNNS discretization

- Formulation, choice of scalings (2D)
- Analysis for 2D compressible case
- ▶ Numerical results reveal good parameter choices for $\nu \rightarrow 1/2$ Benefits
 - Very simple coarse space (RBM)
 - Usual robustness properties
 - Additional robustness for u
 ightarrow 1/2

Ongoing work

- Analysis of incompressible case
- ► 3D
- Deluxe scaling
- Anisotropic domains

References

- A. Pechstein & C. Pechstein A FETI method for a TDNNS discretization of plane elasticity www.numa.uni-linz.ac.at/publications/List/2013/2013-05.pdf
- Astrid Sinwel. A New Family of Mixed Finite Elements for Elasticity www.numa.uni-linz.ac.at/Teaching/PhD/Finished/sinwel-diss.pdf
- A. Pechstein & J. Schöberl. Tangential-displacement and normal-normal stress continuous mixed finite elements for elasticity Math. Models Methods Appl. Sci. 21(8):1761–1782, 2011

A. Pechstein & J. Schöberl. Anisotropic mixed finite elements for elasticity Internat. J. Numer. Methods Engrg. 90(2):196–217, 2012

S. C. Brenner. Korn's inequalities for piecewise H¹ vector fields SIAM J. Numer. Anal. **41**(1):306–324, 2003

Thanks for your attention!