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1 Introduction

Numerical simulations of the dynamics of discrete structures in presence of numer-
ous impacts with frictional contacts leads to CPU-intensive large time computations.
To deal with these problems (e.g. granular materials, masonry structures), numerical
tools have been developed, such as the nonsmooth contact domain decomposition
(NSCDD), presented Sec 2. We focus herein on a distributed version with parallel
detection of fine contacts (Sec. 3) and on two possible communication schemes to
solve the interface problem (Sec. 4). Those improvements allow to study scalability
and numerical performances of the method for 2D and 3D granular media (Sec. 5).

2 The nonsmooth contact domain decomposition

2.1 Nonsmooth contact dynamics reference problem

In this section we recall briefly the background theory of nonsmooth contact dy-
namics in the context of time-stepping schemes before an analysis of the main steps
of the NSCDD method.

With a time-stepping scheme, no event detection is performed. Once the solu-
tion is known at the beginning of a time slab [ti, ti+1], whose known quantities are
denoted with a superscript (−), the quantities at the end of the time slab (without a
superscript) have to be determined.

Grain nonsmooth dynamics. Considering a rigid model for the grains, the dynam-
ics of the granular medium is written as the vector equation [4]:
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MV −R = Rd , (1)

where the prescribed right-hand side is Rd = RD +MV−. V is the velocity of the
grain (it contains the translational degrees of freedom – dof, and the rotational ones);
R is the resultant impulse on the grain due to interactions with other grains and RD

are the external prescribed impulses. The matrix M contains both the mass (for
the translational dof) and the inertia (for the rotational dof). The assembly of these
equations (independent for each grain) is formally written in the same way (1).

Contact interaction. For a unilateral contact Moreau proved via a viability lemma
[4], that we can use a velocity-impulse complementary law:

R(v,r) = 0, (2)

v is the velocity jump at the contact point between the two interacting grains, r is
the impulse at the same contact point. R is usually a non linear and multivalued
relationship between the previous two dual quantities. Both v and r are expressed in
the local coordinate basis to the contacts between the interacting grains. Therefore,
they are linked to the global kinematic and static quantities with compatibility con-
ditions v = HTV and R = Hr.

Reduced dynamics. Taking the dynamics (1) and the compatibility conditions into
account, the reduced dynamics involving material variables can be obtained:

Wr− v =−vd , (3)

where W is the Delassus operator: W = HT M−1H, and vd = HT M−1Rd . To close
the problem, one adds the constitutive relation (2), and the reference problem reads:{

Wr− v =−vd

R(v,r) = 0
. (4)

The difficulty to solve this problem is at least two-folds: on one hand, the number
of unknowns (number of interaction quantities r and v) may be large (for instance,
an average of 6.5 105 unknowns for the 3D problem illustrating this paper), and the
Delassus operator W is not well conditioned. On the other hand, the constitutive
relation is nonsmooth (e.g. it is non linear, and not differentiable). To address the
nonsmoothness issue, the NSCD (nonsmooth contact dynamics) method with a non-
linear Gauss-Seidel (NLGS) solver [4, 2] is used. To address the large size of the
problem, a substructuring approach is proposed.

2.2 Sub-structuring

The proposed sub-structuring may be seen as a FETI-like domain decomposition.
Indeed, after the partition of the sample (step detailed in section 3) constraints are
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added on the interface grain velocities, with E the index of a subdomain:

ns

∑
E=1

AΓEVE = 0, (5)

ns is the number of subdomains, AΓE is a signed boolean matrix selecting interface
grains among subdomains to construct their velocity jumps. This step consists of
a perfect gluing procedure, which is quite different from the approach proposed in
[3]. The dynamics per subdomain reads:

MEVE−RE = Rd
E−AT

ΓEFΓ, (6)

where FΓ are the Lagrange multipliers associated to the previous constraints. One
shows that combining equation (5) and (6) the interface problem reads:

XFΓ =
ns

∑
E=1

AΓEM−1
E

(
RE +Rd

E

)
, (7)

with X = ∑
ns
E=1 AΓEM−1

E AT
ΓE the interface operator [5]. The reduced dynamics prob-

lem per subdomain has the same structure that the global one provided the addition
of Lagrange multipliers as additional external impulses on the given right hand side:{

WErE− vE =−vd
E + vΓ

E
R(vE,rE) = 0,

, (8)

where vΓ
E = HT

E M−1
E AT

ΓEFΓ. To close the problem, the interface behavior (5) or (7)
should be added.

2.3 NSCDD algorithmic structure in the LMGC90 platform

The NSCDD method has been implemented into the LMGC90 platform1 [1] for
time-evolution problems (N is the number of time steps). Algorithm 1 describes its
structure. A NSCDD iteration is then composed of nGS Gauss Seidel iterations on
the reduced dynamics and an update of interface quantities. In practice nGS is chosen
equals to 1. In the next two sections we will focus on the underlined stages (with
boldface) in the following algorithm 1.

1 www.lmgc.univ-montp2.fr/LMGC90
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Algorithm 1 NonSmooth Contact Domain Decomposition (NSCDD)
for i = 1, . . . ,N do

Contact detection (eventually parallelized) and
possible new decomposition of the domain
Initialize unknowns at time ti: (rE ,vE ,FΓ )
while (convergence criterion not satisfied) do

In parallel for E = 1, . . . ,ns:
Compute the velocity v̄Γ

E
Compute (r̄E ,v̄E ) with nGS non-linear Gauss-Seidel iterations on:{

WE r̄E − v̄E =−v̄d
E + v̄Γ

E
R(v̄E , r̄E) = 0 (9)

Update (rE ,vE)← (r̄E , v̄E)
Compute R̄E and correct the velocity on interface grains to get AΓ EV̄E

In sequential, but may be possibly parallelized (DCS version):
Compute ∆FΓ as: X∆FΓ = ∑

ns
E=1 AΓ EV̄E and update interface impulses FΓ

end while
Update grain positions in parallel

end for

3 Contact detection

At the beginning of a time step, positions and velocities of grains are known and
the contact network between bodies has to be computed. Contact detection is a CPU
time consuming task, especially for a large number of bodies —this is directly re-
lated to the number and the shape of the elements considered. Usually, an efficient
solution is to proceed to a two-level detection, i.e. a rough (and cheap) detection fol-
lowed by an elimination of loose contact predictions and the computation of contact
frame (the fine detection).

3.1 Partitioning based on “rough” contact network

Once a rough detection has been performed, the interaction graph consists in nodes
associated to grains and edges associated to interactions. We choose to distribute
interactions among subdomains as in [5] (we proceed by distributing the middle
points between the centers of mass of interacting grains, according to their coordi-
nates, using an arbitrary regular underlying grid, Figure 1(a)). Indeed, with such a
choice, the “boundary” grains are duplicated in the subdomains. If a grain indexed
with i is connected with mi subdomains, mi is called its multiplicity number. For
consistency for the rigid model of the grains, the masses and moments of inertia
are distributed among the neighboring subdomains according to their multiplicity
number, in a partition of unity manner. We remark that rough detection, and so the
domain partitioning, does not have to be done at each time step, but at a user-defined
frequency (fixed at 10 time steps for numerical tests of section 5).
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Fig. 1 Rough (a) and fine (b)
interaction network and their
associated domain partition-
ing. Striped grains represent
grains of multiplicity mi > 1;
dashed lines represent interac-
tions roughly detected which
vanishes in effective contact
network.

(a) (b)

3.2 Parallelized fine detection

Once the domain decomposition has been performed, data can be distributed among
the processors and a fine contact detection can be performed in parallel on each
substructure local data. Nevertheless contacts roughly detected may disappear at the
end and the multiplicity number of the grains may have been incorrectly predicted
(Figures 1(a) and 1(b) show cases we may encountered). In particular, predicted
boundary grains could turn out not to belong to the minimal interface (computed
thanks to the fine contact graph). Their adding to the interface gluing step does not
change the problem to solve but increases the size of data to transfer between pro-
cessors. A future optimization should be to correct interface structures and material
parameters to take this phenomenon into account.

4 Communication schemes for solving interface problem

In this section we present two communication schemes associated to centralized
and distributed interface problem solving procedure. As one has to solve the in-
terface problem for each NSCDD iterations, to define an appropriate algorithmic
formulation, minimizing the data exchanges between processes, is a key issue for
the performances of the proposed method.

4.1 Centralized communication scheme (CCS)

At a first glance, the interface gluing step (7) is defined as a global linear equation
linking all the subdomains. This is replaced in the iterative algorithm by requiring
communications between the subdomains such that one process gathers all the ve-
locity contributions to the vector of velocity jumps. The value of the Lagrange mul-
tipliers FΓ computed sequentially is then distributed such that subdomain E receives
its minimal data amount AT

ΓEFΓ.
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4.2 Decentralized communication scheme (DCS)

Due to the structure of the interface operator X , extensively studied in [5], each
distributed database (per process related to subdomain E∗) is sufficient to construct
the elementary contribution to the interface operator:

XΓE∗ =
ns

∑
E=1

AΓE∗EM−1
E AT

ΓE∗E, (10)

AΓE∗E is a signed boolean matrix, mapping grains of subdomain E to velocity jumps
of the elementary interface ΓE∗ (restriction of the global interface to the boundary
of subdomain E∗). Then, an elementary interface problem can be defined as:

XΓE∗∆FΓE∗ =
ns

∑
E=1

AΓE∗EVE. (11)

Finally, the data gathering of ∑
ns
E=1 AΓE∗EVE on each process corresponds to data

exchanges over an unstructured topology. Indeed discrete element methods, such
contact dynamics, may deal with large/elongated bodies, possibly related to all sub-
domains. A common example of such bodies is a wall which support contacts on a
large range. With the computation of the assembling of local contributions, it is easy
to show that this is the expected iterated vector:

∆FΓ =
ns

∑
E=1

BΓEDEBT
ΓEE∆FΓE , (12)

BΓE is a boolean matrix selecting interface grains among subdomains, BΓEE is a
boolean matrix selecting elementary interface grains among subdomains and DE is
a diagonal matrix with value 1/mi for entries corresponding to grain i.

4.3 Performance comparison of the two communication schemes

The influence of the proposed communication schemes is studied regarding the
CPU time percentage consumed during MPI exchanges (Table 1) with respect to the
whole CPU time of a simulation. The test consists of a sample with 55000 spheres
submitted to an isotropic compaction, over 500 time steps (Figure 2).

Results presented in Table 1 show clearly the gain we may obtain considering
DCS compared to CCS. Decentralized communication scheme indeed allows to
avoid MPI collective communications (especially expensive, in our case, to scatter
updating of Lagrange multipliers) and to partially parallelize interface treatment.
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Table 1 Comparison of elapsed CPU time percentage consumed during MPI exchanges for cen-
tralized (CCS) and decentralized (DCS) communication schemes; isotropic compaction of a 55000
spheres sample.

ns Partitioning pa-
rameters (x,y,z)

CPU percentage
(CCS)

CPU percentage
(DCS)

1 1 1 1 0 % 0 %
3 3 1 1 31.3 % 14.0 %
4 2 2 1 35.6 % 9.1 %
8 2 2 2 58.3 % 18.4 %

sd

(a)

multiplicity

(b)

Fig. 2 Sample of 55000 spheres submitted to isotropic compaction. Subdomains indexes (a) and
multiplicity number of grains (b).

5 Scalability preliminary results

We propose to study scalability of the NSCDD method on tests consisting in sam-
ples of (2D) disks and (3D) spheres submitted to basic loadings. The speedup Sp,
function of the number of processes Np (supposed equals to the number of subdo-
mains), and the number of total iterations, over 100 time steps, are then highlighted.
On both tests, friction is considered at contact between particles. Simulations are
performed on a 48 cores AMD processor.
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Fig. 3 Speedup (a) and total number of iterations (b); biaxial loading of a 13000 disks sample.

2D – biaxial test. As shown in Figure 3, the speedup does not change drasti-
cally depending on the communication scheme for a quite small 2D sample, at least
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for a small number of processes. The number of iterations (independent from the
communication scheme) is nearly constant for all the tested domain splittings.

3D – triaxial test. For 3D granular samples (Figure 4) the centralized communi-
cation scheme has very poor efficiency so it is not reported here. We consider a ran-
dom closed packing of 64000 spheres subjected to triaxial compaction (downward
displacement of the top wall with a constant velocity and confining stress acting on
the lateral walls). That is the hardest mechanical configuration one may encountered
because of the strong indeterminacy of the problem cumulated to the high number
of contacts unknowns (6.5×105 in average in our case), but also the most interest-
ing numerical case for the domain decomposition method proposed. We see that the
speedup has good quantitative behavior, even if the hardware and MPI library opti-
mization may be improved. Indeed, the use of about a hundred processors (for larger
problems than those studied here) implies to mobilize a supercomputing platform to
obtain reasonable speedup.
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Fig. 4 Speedup (a) and mean number of iterations (b); 64000 spheres sample.
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