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1 Introduction

At a first glance asymptotic expansions and domain decortiposire two alter-
natives to efficiently solve multi scale elasticity probkenin this paper we will
combine these two methods: we will use, for several typesalilpms, asymptotic
expansions and show that for an efficient implementationroblems obtained at
the asymptotic limit it may be useful to use domain decontjstype algorithms.
In particular we will consider problems with heterogenousan heterogenous thin
layers(see Fig 1 a) et b)). To directly solve such problemsa Byandard finite el-
ement method is too expensive from a computational pointie@f.vThat is why
specific asymptotic expansions are used and allow to repteceriginal problem
by a set of problems defined on a new domain where the thin layeplaced by
aline in 2D or a surface in 3D (see Fig 1 c¢)). In addition paitic jumping condi-
tions are defined on this new interface yielding a non stahgewsblem which can
be solved by a Neumann-Neumann domain decomposition #iguorirhe paper is
organized as follows: In Section 2 we review of a domain dguuosition algorithm
on an elasticity problem, in Section 3 we consider a thin lafeheterogeneities
which can be holes or elastic inclusions and, finally, in Bectt we consider a
multi-materials with a thin layer with high ratio in matdrgoperties.

2 Domain decomposition algorithm: general setting for an
elasticity problem

The aim of this paragraph is to specify the notations. We idens standard linear
elasticity problem:

divot =0 in Q¢
of = Ae(uf) inQ° (1)
ofn =F onlg
ué =0 only
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The mechanical characteristics of the multi-materialcttrie are described by the
elasticity tensoA. Each material is isotropic bét is indeed material dependent. In
the sequel we will omit this constitutive equation. The stuwe is clamped on a part
o C 0Q (of surface measure 0) and a density of surface forces is applied on
the complementary paft. In a variational form this problem writes

A(u,v) = L(v) for all v e V, with A(u,v) = /QAiWad(u)aj(v) dx. (2

Let us mention that the variational form is always used taréisze the problem,
nevertheless in order to simplify notations we will use eitlpartial differential
equations or variational form. The same problem will be aered in sections 3
and 4, where the the domain differs with respect to the hgtareities. We will ex-
plain how the domain decomposition algorithm is adapte@ahesituation. In order
to use a primal domain decomposition to solve the problenrarestorm the prob-
lem on the entire domain in a problem on the interface. Afpdittsng the domain
in non overlapping subdomains we introduce an additionkhawn,A = Tr(u) on
the interface. For simplicity reasons we will consider henty two sub-domains
and only a first level preconditioner. To solve the originadidem is equivalent to
solving the following problem on each subdomain:

diva(u') = 2 inQ

on =fI ondQr NG 3)
u =ud ondQ,NQ
u' =y onl

By linearity u' = uj, + u}, whereuj, is the solution of (3) withuy, = 0 on/” andu}, is
the solution of (3) withf? = 0, f/ = 0. In order to settle the interface problem we
write the continuity of the normal stress on the interface:

o(uh)n+ o(u?)n? = a(uy)n' + o(ug)n* + o (uf)n® + o(ug)n* =0

Using the Steklov Poincaré operatwhich is defined as follows: far given on
I" (the sub-domains interface )

Sy = o(uy)n
wheren' denotes the outer normal én the interface problem writes:
Siy+ Sy = —o(ug)n* — o(ug)n® (4)
In variational form
Si(y,V) +S(y.v) = ~L(a(up)n*,v) — L(o(u§)n?v)

This problem will be solved using a iterative method, thecpralitioner isM =
a1S; 1+ Syt with ag + ap = 1. ([6], [3])
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The parallel between this approach and the one used in tinepastic analysis
(as described in 1) is that a particular problem has to beedaiw the interface, the
next sections will specify this concept.

3 Structure with a thin layer of heterogeneities

Let us consider a three-dimensional structure with smalhiital heterogeneities
periodically distributed along a surface Let € be a small dimensionless param-
eter which characterizes the diameter and the periodicgeraent of the hetero-
geneities. We denot& the layer of thickness containing the heterogeneities cen-
tered onw (see Fig. 1 a)).

Fig. 1 a) Heterogeneous layer b) Homogeneous layer ¢) Limit domain

The domainQ containsl¢ the set of identical heterogeneities of diametBr
and e-periodically distributed in the vicinity of the interiougface w of equation
x1 = 0. We consider the problem (3) with two types of inclusioravities and elastic
inclusions. The displacement field and the stress field®, satisfy, respectively,
equilibrium equation (1).

Notice thatQ is a domain with a number of heterogeneities which depends on
For the elastic inclusions® andA' (the elasticity tensor in the structure, respectively
in the inclusions) are of same order of magnitude.

The asymptotic analysis of this problem fr— O provides a model describing
the linear elastic behavior of the structure on a simplifiechdin denoted by2,
where the layeB? becomes the surfade (see Fig. 1 ¢)). More precisely, by as-
suming thau? ~ u® + eu?, the initial problem (1) is approximated by two new ones
where the layer of heterogeneities is replaced by a surfa@eéhich particular jump
conditions are defined.

The zeroth order approximatiarf is the solution of the following transmission
linear problem :

diva® =0 in Qq
o’n =F onl¢ (5)
u@ =0 onr
Notice that there are no jumps énfor the outer approximation. In other words, at

the zero order the outer approximation does not considendterogeneities. Thus
this problem can be solved using a standard finite elemeneptoe.
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The first order approximatiam' is the unique solution of the following boundary
value problem (with transmissions conditionsion

divel =0 in Qo\I"
oln =0 onlg
ut =0 onlp (6)

U] ®) =% (°0,%);
[o%e1] (%) = %hs (U9(0,%) ; fYT”( )dY)
where Vil are the solutions of nine elementary problems defined on epe r
resentative cell ([5],[4]) and T are the stress fields associated witH and
[VH]® = limy, oo VI —limy, oo VI~

%4 has the same structure for the different types of inclusiahile ¢4,s depends
on the inclusion:

ou?

0Xj (

i) in the elastic inclusions case one has:

Gy = 0,%) [VI]” (7)

e S_ Al 0(0.% ‘7UO [
s = div (|I|(A —A')e(u’(0,%) 0xJ /TJ dy) (8)

i) in the cavities case one has:

: e (W0(0.% 0u0 i
%ns = div (|I |Ale (u”(0,%) /T I dy) 9)
(3XJ

Let us emphasize that, for the first order problémand¥,s are given and depend
on the first and second order derivatives of the zeroth ondgyi@m. This is not an
issue at the domain decomposition level, while, at the imjletation level, since
the solutioru® is only of classC?, a regularization is needed. In practice, an efficient
way to implement the jump conditions in problem (6) is to sdilis problem by a
domain decomposition type algorithm which will be detaiteteafter.

Finally, the generic form of the first order problem, (6) isegi by:

—divo(u) in Q

on =0 o0ndQk

u =0 ondQ, (20)
[u] =% onl

[on] =%s onl

where¥y and¥%,s denote, respectively, the gap in displacements and notreakes
on . By using the linearity of the problem, we will search, in kaubdomain a
solution of the form _ _ .

ul — WI +Bizl
wheref3; are two real numbers conveniently chosen @nare the solutions of the
following two independent problems:
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—diva(Z)=0 inQ

on =0 ondQrNQ;
z =0 ondQ,NQ (11)
z =% onl

Notice that _ . .
—divo(w') = —divo(u' - BZ) =0

The transmission conditions for are given by:

{ W] = [u] - B1% + B%a = (1- P+ B2)%
[on] = [u]+ B10(Z")n— B20(Z%)n = Gns+ Bro(2H)n — B20(2%)n

If we choose 1 1 + B> = 0 thenw is continuous on the interfade, while the

normal stress is discontinuous at the interface.
By introducing the Steklov Poincaré, as described abdveeunknowny on the

interface is the solution of the following problem:

(S1+S)y = —aWd)nt — a(W3)n? + G5+ Bro(z})nt — Boo(z%)n?

Let us remark that this equation differs from (4) only on tlght hand side. In
this situation the solution of the entire problem is not agutar as in section 3.
Here, because of the jumps, the solution is noHi(Q), this is why the norms
used in the following numerical simulations dr& Q). Thus as the operator does
not change, the same algorithms (and in particular the saev®pditioner) may be
used to solve the problem with the same performance and riticadd analysis is

required to prove efficiency.
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Fig. 2 a) Mesh used for the asymptotic computation b) Fine mesh ﬁ@%

In order to numerically validate this approach we consid2bacase where&
is a plane domain containingé holes of diametegD Notice that the domain and
thus the number of holes dependssor reference solutionf, of the problem (1) is
computed on a large mesh (see Fig 2 b)) and compared with yhepaatic solution
uﬂ anduﬂ + w% obtained by solving the problems (5) and (6) on a corse mesh (s
Fig. 2 a)). This comparison is performed by computing thatiet error for the

L2-norm (see table (1)).
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Table 1 L2?-errors norms computed Q¢

ué —u? ut — (u + eut
€ Nb elements  dofs I . nll.2 [lup— hj )12
ICHIE 1T
1/20 13348 54938 0.013501216 0.001225971
1/40 27668 113530 0.006689361 0.000475813
1/80 57164 234050 0.003281498 0.000176916

4 Multimaterials with strong curved interface

In this section we analyze the mechanical behavior of a qdati structural as-
sembly, which is constituted by an elastic shell-like irsddun with high rigidity
surrounded by two three-dimensional elastic bodies.

Let Q" andQ ™~ be two disjoint open domains with smooth boundafé&s™ and
Q. Letw:={dQ " NJQ~}° be the interior of the common part of the bound-
aries which is assumed to be a non empty domaiRinLet 8 € ¥?(w;R®) be an
immersion such that the vectoag (y) := dq 8(y) form the covariant basis of the

tangent plane to the surfa&= 6(w). We note withaz(y) := % the unit

normal vector tdS. We insert an intermediate curved layer movi@g andQ~ in
the ag and —ag directions, respectively, by an amount equatéo- 0, wheree is
a small dimensionless real parameter. TherQétf ;= {xf := x+tfag; x € Q*},
QME = wx|—t&,té], andQ® := Q- fUQ e U Q™ as shown in Fig. 1 The struc-
ture is clamped off C (9Q%\I'™#). We consider thabcoincides with the middle
surface of the shell-like inclusia?™é. Moreover, the shell thicknesSdepends lin-
early ong, so that® = et. For a more detailed treatment of this asymptotic problem
in a general curvilinear framework, the reader can referfp [2].
The physical variational problem defined over the variabl@din Q¢ is
Findu® € V& 1= {v* € HY(Q%R®); V¥|re = 0} 12
{AE(uf,vf)+A§r(u£,v£)+Aﬁ](u5,v5) = L(v®) for all v& € V¢, (12)

where A is defined as in (2).

The functionalL(-) is the linear form associated with the applied forces. Here
AlKGE .— pegileghte | g(glkegile 1 gitegike) are the contravariant components
of the elasticity tensor, wherg!! can be considered as the curvilinear version of
the Kronecker's delta. Let us suppose that the Lamé’s aotstof the isotropic
materials satisfy the following dependences with respeet A ©¢ = A+, ¢ =
“i, Ame — ZEL/\m, “m,e _ %“m'

As shown in [1], the asymptotic expansion method appliethéophysical prob-
lem (12) leads to a simplified model for the assembly, in whi@hlayer inclusion
is reduced to its middle surface asends to zero. Thus the presence of the layer is
replaced by a surface shell like energy at the interfacehuwticresponds to a partic-
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ular membrane transmission condition between the two tliieensional bodies.
The main result is contained in the following theorem:

Theorem 1. The leading term u® of the asymptotic expansion u(e) = u® + eut +
£2u? 4 ..., isthe unique solution of the following limit problem:
Find u® € Viy such that (13)
A= (U0, v) + AT (U0, v) + Al (U0, v) = L(v) for all v € Wy

where Viy := {v € HY{(QT UwUQ~;R3); V|, € HY(w;R?) x HZ(w), V|r, = O},
and

AR (uO,v) = Zt/ a"P e, (U)eyp(v) dy, (14)

isthe bilinear form associated with the membrane behavior of the shell, a??97 jsthe
elagticity tensor of the shell and e;g(u) = %(Uma +Ug|g) is the change of metric
tensor.

Remark. In the simplified model we obtain a membrane transmissiorlition at
the interface between the two three-dimensional bodieghnwdan be interpreted as
a curvilinear generalization of the Ventcel-type transiois condition obtained in
[1]. Indeed, by integrating by parts problem (13), one has
—divor =finQ*, [ [0%] =div(n??) in w,
0_ 33 _ ap : (15)
uw=0 on'y, [0%%] =nPb,s i w,

wherea!) := Aq, (u0) andn?P := 2ta?®P9Te, (U0, represent, respectively, the
Cauchy stress tensor and the membrane stress tensor oéthésH| := 0/ — o™
represents the stress jump at the interfaceandbyg is the second fundamental
form associated to the shell middle surface.

In order to solve the problem (13) we introduce a specific domacomposition
algorithm, more precisely, we construct the interface f@ab We consider three
subdomain®t := QW , @~ := Q@ and the shell2™. For the two 3D domains,
Q1 02 we introduce the corresponding Steklov Poincaré opegatdrwe observe
that the domaim2?3 is the interface. Thus, in a variational form, the comptitibi
condition on the interface writes :

SH(y,v) + S(v.v) + ARy, V) = L(~0a(ug)n" — La(ug)n?,v) (16)

This problem can be solved by a Neumann-Neumann algorithrefidecause,
compared to (4) we add in the right hand side a term wich is sgtricand positive
defined.

As a numerical example, we consider an axisymmetric prolgdérvo thick
cylinders bonded together with a cylindrical shell with ihiggidity subjected to an
internal pressurel; = 5€05, Eqhg) = 5607,V = 0.3, t=0.1,Rmax = 6). We choose
this particular geometry because it is characterized bymranediate mechanical
interpretation. Moreover we can compute an exact solutiorttis problem. We
tested the domain decomposition by using two subdomaimrsgfiell is "glued”
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to another subdomain) and three subdomains and by studygifiluence of a
Neumann-Neumann preconditioner on the number of iteratidhe preliminary
results are shown in the following table. As we can see thehaurof iterations
decreases drastically when adopting a preconditioner.

Table 2 Mesh:Ng = 11020,Ng a1 = 580

Subdomains Iterations Iterations with preconditioner
2 69 6
2+1(shell) 70 46

In the actual simulations we can use membrane or shell elsméne shell is
more robust but also more computationally demanding. Inexample we used
a membrane element. The drawback is that the operator iswettible (that is
needed in the preconditioning step) and that explains whyébults with two do-
mains are far better than with three domains. Hence, ouretemtple does not
behave totally as a pure membrane. This feature disappbars shell elements are
used or when the problem has a pure membrane behavior.
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