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1 Introduction

We developed parallel time domain decomposition methods to solve systems of
linear ordinary differential equations (ODEs) based on the Aitken-Schwarz [7] or
primal Schur complement domain decomposition methods [6]. The methods claim
the transformation of the initial value problem in time defined on ]0,T ] into a time
boundary values problem. Let f (t,y(t)) be a function belonging to C 1(R+,Rd) and
consider the Cauchy problem for the first order ODE:{

ẏ = f (t,y(t)), t ∈]0,T ], y(0) = y0 ∈ Rd . (1)

The time interval [0,T ] is split into p time slices Si = [T+
i−1,T

−
i ], with T+

0 = 0
and T−

p = T−. The difficulty is to match the solutions yi(t) defined on Si at the
boundaries T+

i−1 and T−
i . Most of time domain decomposition methods are shoot-

ing methods [1] where the jumps yi(T−
i )− yi+1(T+

i ) are corrected by a sequential
process which is propagated in the forward direction (i.e. the correction on the time
slice Si−1 is needed to compute the correction on time slice Si). Our approach con-
sists in breaking the sequentiality of the solution’s initial value updating for each
time slice. For this, we transform the initial value problem (IVP) into a boundary
values problem (BVP) leading to a second order ODE:

ÿ(t) = g(t,y(t))
de f
=

∂ f
∂ t

(t,y)+ f (t,y(t))
∂ f
∂y

(t,y(t)), t ∈]0,T [, (2a)

y(0) = y0, (2b)
y(T ) = β . (2c)

Nevertheless, the difficulty in solving equation (2) is that β is not given by the
original IVP. To overcome the lack of knowledge of β , we proposed to set this value
by using an iterative Schwarz domain decomposition method with no overlapping.
For sake of simplicity, let us consider only one domain S1. Given a,b in R+ with
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a < b, we denote [a,b] to indicate that the time interval must be traveled in the back-
ward direction. We first symmetrize the time interval S1 providing S̄1 = [0+,T−].
A symmetric time integration scheme, like the second order implicit Störmer-Verlet
symmetric scheme, is then required to perform a backward time integration onto
the symmetrized interval to come back to the initial state. Then classical domain
decomposition methods can be applied such the multiplicative Schwarz method
with no overlapping time slices with Dirichlet-Neumann (associated to the Lapla-
cian in time) transmission conditions (T.C.) for linear system of ODE (or PDE [8]).
As proved in [7] the convergence/divergence of the error at the boundaries of this
Schwarz time DDM can be accelerated by the Aitken technique to the right solution
when f (t,y(t)) is linear.

This paper treats the case where f (t,y(t)) is nonlinear. Then the multiplicative
Schwarz algorithm generates at the boundary of time slices a nonlinear vectorial
sequence. We replaced in [5] the Aitken’s acceleration of the convergence by the
ε-topological algorithm [3] that has been designed to extrapolate the convergence
of such nonlinear sequences. Some enhancement of the convergence have been ob-
tained but the number of Schwarz iterations is still too large to obtain an efficient
method. This leads us to think again about the transmission conditions between time
slices. When systems of nonlinear ODEs are under consideration, we show in the
next section that the Dirichlet-Neumann T.C. (associated to the time Laplacian oper-
ator only) at boundary time slices are not the right choice. The Neumann boundary
condition has to be replaced by a nonlinear boundary condition preserving an invari-
ant of the solution. These nonlinear T.C. differ from the optimized nonlinear T.C.
present in the waveform relaxation of [4]. In section 3, we show the pure linear be-
havior of the multiplicative Schwarz with a combination of the nonlinear T.C. and
the Dirichlet condition by demonstrating that the operator associated to the error
does not depend of the iteration. This operator links the transmission conditions of
all the time slices, allowing to solve the problem on all time slices in the same time
using the Aitken acceleration of the convergence. Some perspectives of this work
are given in the conclusion.

2 What are the right T.C. in the nonlinear case?

Let us first give a new formulation of the equation (2) assuming that f (t,y(t) is
scalar and f−1(t,y(t)) exists. Then one can consider the problem:

− d
dt
[− f−1(t,y(t))

d
dt

y(t)] =− d
dt
(−1) = 0, t ∈]0,T [,y(0) = 0, (3a)

y(T ) = 1. (3b)

where we imposed a Dirichlet B.C. at the time t = T for the sake of simplicity. Then
the multiplicative Schwarz with Neumann (associated to the Laplacian operator)-
Dirichlet T.C. applied to [0,T ] = [0,1] = [0,Γ ]∪ [Γ ,1] with Γ = 3/5 writes:
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− d
dt
[− f−1(t,y

n+ 1
2

1 (t))
d
dt

y
n+ 1

2
1 (t)] = 0, t ∈]0,Γ [,y

n+ 1
2

1 (0) = 0, (4a)

yn+1
1 (Γ ) = αn = yn

2(Γ ), (4b)

and

− d
dt
[− f−1(t,yn+1

2 (t))
d
dt

yn+1
2 (t)] = 0, t ∈]Γ ,1[,yn+1

2 (1) = 1, (5a)

d
dt

yn+1
2 (Γ ) = β n+1 =

d
dt

y
n+ 1

2
1 (Γ ). (5b)

Let us consider f (t,y(t)) =
√

y(t) then the exact solution is y(t) = t2 and
y(3/5) = ᾱ = 9/25. The exact solution of the Neumann-Dirichlet writes:

y
n+ 1

2
1 (t) =

25
9

t2αn → d
dt

yn+1
1 (

3
5
) =

10
3

αn. (6)

yn+1
2 (t) =


25
4

r2
1t2 +

5
2

r1t(−5r1 −2)+
1
4
(−5r1 −2)2,

25
4

r2
2t2 +

5
2

r2t(−5r2 +2)+
1
4
(−5r2 +2)2.

(7)

where r1 (respectively r2) is the root of 3r2
1 +3r1 +2α = 0 (respectively

3r2
2 − r2 +2α = 0). The sequence (αn) satisfies one of the equation that follows:

αn+1 =

{
f1(αn) = 1/2− (1/6)

√
9−24αn − (2/3)αn,

f2(αn) = 1/2+(1/6)
√

9−24αn − (2/3)αn.
(8)

If αn+1 = f1(αn) then the sequence converges toward the fixed point
ᾱ1 = f1(ᾱ1) = 0 as | f (1)1 (ᾱ1)|< 1. But ᾱ1 ̸= ᾱ . If αn+1 = f2(αn) then
ᾱ2 = f2(ᾱ2)= ᾱ , but | f (1)2 (ᾱ2)|> 1 and the function is not contractive. In both cases
the multiplicative Schwarz will not converge with these transmission conditions.

If we replace Equation (5b) by Equation (9b):

− d
dt
[− f−1(t,yn+1

2 (t))
d
dt

yn+1
2 (t)] = 0, t ∈]Γ ,1[,yn+1

2 (1) = 1, (9a)

f−1(Γ ,yn+1
2 (Γ ))

d
dt

yn+1
2 (Γ ) = β n+1 = f−1(Γ ,y

n+ 1
2

1 (Γ ))
d
dt

y
n+ 1

2
1 (Γ ). (9b)

The sequence (αn) of the Dirichlet condition satisfies :

αn+1 =


0, αn >

9
4
,

4
9

αn − 4
3
√

αn +1, 0 ≤ αn <
9
4
.

, thus αn → α =
9
25

.
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This result shows that we can not simplify the T.C. by only taking the matching of
the time derivatives between time slices, even if the nonlinear function f−1(t,y(t))
is continuous.

Coming back to the original formulation of the Schwarz algorithm for the
second order ODE Equation (2), the T.C. to replace the transmission condition
d
dt

y
m+ 1

2
1 (T−) =

d
dt

ȳm
1 (T

−) should be the flux or co-normal derivative

f−1(y
m+ 1

2
1 (T−))

d
dt

y
m+ 1

2
1 (T−) = − f−1(ȳm

1 (T
−))

d
dt

ȳm
1 (T

−), if f−1(yn+1
1 (T−)) ̸= 0,

else
d
dt

y
m+ 1

2
1 (T−) = 0. Moreover, this invariant of the problem, allows us to simplify

the methodology too. We can impose (with assuming f−1(T−,y(T−)) ̸= 0) the B.C.

f−1(T−,y(T−))
d
dt

y(T−)= 1. Consequently, we do not need to symmetrize the time
interval and then saving by a factor 2 the computational resources needed.

Fig. 1 Convergence/Divergence of the multiplicative Schwarz with respect to the T.C.

f−1(t,y(t))
d
dt

y(t) with f−1(t,y(t)) = {(
√

y(t))−1,exp(−y(t)),
1

1+ y2(t)
}, or

d
dt

y(t) .

Figure 1 represents the numerical convergence of multiplicative Schwarz with
the discretized nonlinear T.C. for the discretizing scheme associated to the Equa-

tion (3) with f−1(t,y(t)) = {(
√

y(t))−1,exp(−y(t)),
1

1+ y2(t)
}. It exhibits that the

convergence behavior is purely linear for this problem with two time slices and one

artificial interface. The T.C. with imposing the matching of
dy
dt

(t) only does not
converge as expected by the theory. The combining of the Dirichlet and relaxed flux
for T.C. converges faster. We show in section 3 the pure linear behavior for the con-
vergence of the multiplicative Schwarz for the time decomposition with this kind of
nonlinear T.C. .
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3 Pure linear convergence of the Time Schwarz DDM with
nonlinear flux transmission conditions

Let us consider the problem Equation (3a) with Dirichlet B.C. at t = 0 and the
invariant flux B.C. equal to 1 at t = T . Then we split the time interval [0,T [ into
p time slices of size H = T/p and we apply the multiplicative Schwarz algorithm
with Dirichlet B.C. at t = T+

i−1 and a combination of a Dirichlet and the invariant
flux B.C. at t = T−

i times a parameter γ :

d
dt

f−1(t,y
n+ 1

2
i (t))

d
dt

y
n+ 1

2
i (t) = 0, t ∈ Si, (10a)

y
n+ 1

2
i (T+

i−1) = yn
i−1(T

−
i−1), (10b)

y
n+ 1

2
i (T−

i )+ γ f−1(T−
i ,y

n+ 1
2

i (t))
d
dt

y
n+ 1

2
i (T−

i ) = yn
i+1(T

+
i )+

γ f−1(T+
i ,yn

i+1(T
+

i ))
d
dt

yn
i+1(T

+
i ). (10c)

Following the idea of [2], we use the Kirchoff transformation by introducing new
variables ui(t) such that

ui(t) :=Θ(yi(t)) =
∫ yi(t)

f−1(t,z(t))dz a.e. in Si. (11)

Then f−1(t,yi(t))
d
dt

yi(t) =
d
dt

ui(t) . Here the f−1(t,z(t)) is taken sufficiently con-

tinuous such that the value of Θ(y(t−)) =Θ(y(t+)) and an equality on “y” traduces
an equality on “u”. Schwarz Algorithm (10) can be rewritten as:

d2

dt2 u
n+ 1

2
i (t) = 0, t ∈ Si, (12a)

u
n+ 1

2
i (T+

i−1) = ηn
i

de f
= un

i−1(T
−

i−1), (12b)

u
n+ 1

2
i (T−

i )+ γ
du

n+ 1
2

i
dt

(T−
i ) = χn

i
de f
= un

i+1(T
+

i )+ γ
dun

i+1

dt
(T+

i ). (12c)

We can show that the B.C. of this multiplicative Schwarz converge purely linearly
to the B.C. associated to the solution. The error ei = ui −u satisfies

d2

dt2 e
n+ 1

2
i (t) = 0, t ∈ Si, (13a)

e
n+ 1

2
i (T+

i−1) = en
i−1(T

−
i−1) = αn

i
de f
= ηn

i −η∞
i , (13b)

e
n+ 1

2
i (T−

i )+ γ
de

n+ 1
2

i
dt

(T−
i ) = en

i+1(T
+

i )+ γ
den

i+1

dt
(T+

i ) = β n
i

de f
= χn

i −χ∞
i . (13c)
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The error ei(t) writes ei(t) = ai t +bi with:

ai =
β n

i −αn
i

γ +H
, and bi =−

(β n
i −αn

i )

γ +H
T+

i−1 +αn
i . (14)

For the sake of simplicity, let us take p = 6. We have αn
1 = 0 and β n

6 = 0. Then one

can write: Ξ n+ 1
2

1 := (β n+ 1
2

1 ,αn+ 1
2

3 ,β n+ 1
2

3 ,αn+ 1
2

5 ,β n+ 1
2

5 )T = P1Ξ n
2

and Ξ n
2 := (αn

2 ,β
n
2 ,α

n
4 ,β

n
4 ,α

n
6 )

T = P2Ξ n− 1
2

1 with:

P1 =
1

γ +H



−1 1 0 0 0

γ H 0 0 0

0 0 −1 1 0

0 0 γ H 0

0 0 0 0 −1


and P2 =

1
γ +H



H 0 0 0 0

0 −1 1 0 0

0 γ H 0 0

0 0 0 −1 1

0 0 0 γ H


. (15)

The matrices P1 and P2 do not depend on the iteration n, and are invertible with an
appropriate choice of γ . The matrix P = P1P2 links all the B.C. associated to the
odd time slices as follows:

P=
1

(γ +H)2



−H −1 1 0 0

γ H −H H 0 0

0 −γ −H −1 1

0 γ2 γ H −H H

0 0 0 −γ −H


. (16)

Consequently the multiplicative Schwarz algorithm converges or diverges purely
linearly and the right B.C. associated with the solution can be extrapolated with
the Aitken’s acceleration of convergence technique using this convergence or diver-

gence behavior. By setting Λ n+ 1
2

1
de f
= (χn+ 1

2
1 ,ηn+ 1

2
3 ,χn+ 1

2
3 ,ηn+ 1

2
5 ,χn+ 1

2
5 )T , the Aitken’s

extrapolation, with the identity matrix I, writes: Λ ∞
1 = (I−P)−1(Λ

3
2

1 −PΛ
1
2

1 ). For
H = 1 and γ = 0.5 the eigenvalues of P are with 4 significant digits:
{−0.1413±0.2478 i,−0.2608 ,−0.2221±0.1496 i} which shows the convergence
of the multiplicative Schwarz.

Remark 1. We can not impose the flux T.C. only at the end of time slices because
the flux B.C. at the last time slices then will impose ai = 0,∀i. Consequently we
would have a sequential propagation of the right B.C. at each Schwarz iterate.

Remark 2. As we have d
dt un

i+1(T
+

i ) = 1 then Equation (10c) can be replaced by:

u
n+ 1

2
i (T−

i )+ γ
d
dt

u
n+ 1

2
i (T−

i ) = χn
i

de f
= un

i+1(T
+

i )+ γ. (17)
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4 Numerical implementation and result

In order to implement the multiplicative Schwarz, we still use Equation (2a) with
using the Störmer-Verlet second order in time implicit scheme. Considering N + 1
regular time steps ∆ t on each time slice Si, and z j ≃ yi(T+

i−1 + j∆ t), the flux T.C.
given by Equation (17) is discretized in time with the second order scheme with
f−1
N = f (T−

i ,zN)
−1:

yi(T−
i )+ γ f (T−

i ,yi(T−
i ))−1 dyi

dt
(T−

i )≃ zN + γ f−1
N (

3
2

zN −2zN−1 +
1
2

zN−2). (18)

The local problem on each time slice consists in searching the zero of the func-
tion F(z0, . . . ,zN) = 0 including the two T.C. for j = 0 and j = N with a Newton
method with a stopping criterion set to be 10−7. The Jacobian matrix of F is mainly
a tridiagonal matrix when we applied a Gaussian elimination of the term in position
N,N −2. Moreover the nonlinearity is concentrated in the scheme only on the diag-
onal of the Jacobian and on the last row. An initial solution is computed on a regular
coarse time mesh with the Newton stopping criterion set to be 9.10−2. Then the
Kirshoff transformation Θ is applied to the T.C. Y i (of odd time slices) in order to
obtain the acceleration matrix PΘ . Next, the Aitken acceleration is performed in the
transformed space (associated to the Kirshoff transformation) and the accelerated
T.C. Y ∞ on odd time slices are retrieved with applying Θ−1 as follows:

Y ∞ :=Θ−1((I−PΘ )−1(Θ(Y 2)−PΘΘ(Y 1))). (19)

Remark 3. This formula generalizes to the nonlinear case the Aitken-SVD [9]. In
this last case, Θ(Y ) = UY is the linear change of variable where U comes from the
singular value decomposition UΣVT of the T.C. arizing in the Schwarz iterations.

5 Conclusion

We obtained new nonlinear transmission conditions for our time domain decompo-
sition which consists to apply classical multiplicative Schwarz algorithm on non-
overlapping time slices. These T.C. make the multiplicative Schwarz algorithm hav-
ing a pure linear convergence that allows it to be extrapolated to the T.C. satisfied
by the searched solution. The method is for the moment applied to scalar problem,
some extension to system of non linear ODEs is under investigation by using the
definition of the inverse of a vector used in the ε-algorithm.
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Fig. 2 Maximum of relative error between the Schwarz Dirichlet B.C. of odd time slices with the
exact solution (dash line) and its acceleration by Aitken technique (solid line), with respect to the
Schwarz iterations for f (t,y(t)) = exp(y(t)). Number of time slices is p = 12, N = 81, γ = 20.
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