
An Adaptive Parallel-in-Time Method with
application to a membrane problem

Noha Makhoul Karam1, Nabil Nassif2, and Jocelyne Erhel3

1 Introduction
Assuming global existence on [0,∞) (and uniqueness) for a solution to the initial
value problem:

(S)

{ dY
dt = F(t,Y), 0 < t ≤ T < ∞,

Y (0) = Y0,

we seek in this paper, computing its solution Y : [0,∞]→Rk using a parallel-in-time
method, for a given function F : R×Rk→ Rk.
There is no natural parallelism across time since the solution on a time level must
be known before the computation of the solution at subsequent time levels can
start. However, it could be possible to compute simultaneously on many time lev-
els by providing a multi-processor architecture some initial guesses for the solu-
tion at later time levels. Such time-parallel computations may be superposed to
parallelism in space variables whenever (S) results from a semi-discretization of
a time-dependent partial differential equation. Several parallel-in-time algorithms
have been proposed to tackle (S). One of the first has been suggested by Niev-
ergelt [12] in 1964 and led to multiple shooting methods of which many variants
were developed [2], [3], ... In the eighties and nineties, parabolic multigrid methods
and multigrid waveform relaxation have been devised. In 2001, Lions, Maday &
Turinici proposed in [5] the parareal algorithm that marked a turning point: since
its introduction, it was subject to many contributions ([6], [4], [1], ...), in particular
during Domain Decomposition Conferences. All those methods are based on the
principle of combining coarse and fine resolutions in time, starting with the choice
of a most often regular coarse grid for the time domain, followed by prediction of
starting seed values at the lower ends of the coarse grid intervals, then iteratively
proceed with parallel computations on a fine grid within each time-interval yield-
ing updated values at their upper ends. Evaluation of the resulting gaps between
predicted and updated values on the coarse grid provides corrections for new seed
values. An iterative process is thus pursued until convergence occurs.
In this work, we give a parallel-in-time method that has been first introduced in
[10] and experimented on a reaction-diffusion problem having a bounded solution.
Two main features are used in this method: (i) the use of an end-of-slice function,
strongly related to the behavior of the solution, that permits the automatic generation
of a non-uniform coarse grid; (ii) rescaling, within each of the generated slices, the
time and the solution variables thus obtaining a sequence of rescaled initial value
problems with uniformity properties. Such approach has been used (in its two com-
ponents) in [8] and [11] for getting sequentially accurate solutions for stiff and ex-

Université Saint Joseph, Beyrouth noha.makhoulkaram@usj.edu.lb · American Univer-
sity of Beirut nn12@aub.edu.lb · INRIA, Rennes Jocelyne.Erhel@inria.fr

1

2 Noha Makhoul Karam, Nabil Nassif, and Jocelyne Erhel

plosive systems and has been exploited in [10] for parallel time integration of sev-
eral types of initial value problems. The resulting parallel in time integration is done
without numerical integration over the coarse grid as it is the case in the parareal
method: instead, a concept of similarity between the rescaled systems allows the
prediction of starting values at the onset of future slices. We refine here the similar-
ity concepts in order to tackle more problems (having non-bounded solutions) and
to increase the accuracy of the predictions thus enhancing speed-ups.
After giving, in section 2, an overview of the automatic coarse grid generation, we
define in section 3 some similarity properties for the rescaled systems. This yields
a prediction model which is at the core of the adaptive parallel-in-time (APTI) al-
gorithm presented in section 4. Numerical results on a membrane problem are then
given in section 5.

2 Automatic Coarse Grid generation
The basic principle of the method is in breaking (S) into a sequence of shooting
values problems. Specifically, we assume the existence of a shooting-value function
E : Rk×Rk → R that permits the initiation of a recurrence process, starting with
a first slice of the coarse grid, obtained by seeking

{
T1,
{

Y (t) ∈ Rk,0≤ t ≤ T1
}}

such that:
(S1)


dY
dt = F(t,Y), 0 < t < T1,

Y (0) = Y0,
E(Y (t),Y0) 6= 0, 0 < t < T1, E(Y (T1),Y0) = 0.

Y1 = Y (T1) becomes the initial condition for a 2nd slice of the coarse grid. More
generally, we let for n > 1, Yn−1 = Y (Tn−1) and define the system on the nth slice:

(Sn)


dY
dt = F(t,Y), Tn−1 < t < Tn,

Y (Tn−1) = Yn−1,
E(Y (t),Yn−1) 6= 0, Tn−1 < t < Tn, E(Y (Tn),Yn−1) = 0.

Based on the End-Of-Slice (EOS) function E(., .), one gets the coarse grid:
{0 = T0 < T1 < ... < Tn < ...TN−1 < T ≤ TN},

with the corresponding sequence of starting values of the solution:
{Yn = Y (Tn)|n = 0,1, ...,N}.

Two cases of existence of a function E(., .) have so far been identified ([7]).

a. Case of Explosive solutions
Let ||.|| = ||.||

∞,Rk and assume limt→∞ ‖Y(t)‖= ∞. In that case, given U,W ∈ Rk,
and D(W) ∈ Rk×k an invertible matrix depending on W with ||(D−1(W))(V)|| ≥
c(W)||V ||, we then let for S > 0: E(U,W) = ||D−1(W)(U−W)||−S.
When applied to (Sn), such function E(., .) determines the size of the nth slice
[Tn−1,Tn] by:

−S≤ E(Y (t),Yn−1)< 0, Tn−1 ≤ t < Tn and E(Y (Tn),Yn−1) = 0. (1)

b. Case of Oscillatory Problems
When the behavior of the solution is oscillatory, over a long period of time, in the
sense that there exists a two-dimensional plane P in Rk on which the projection of
the solution’s trajectory rotates about a fixed center ω , then a slice is ended when
the solution completes a full, or almost full, rotation in that plane about ω .

An Adaptive Parallel-in-Time Method with application to a membrane problem 3

3 Parallelizing the shooting values problems {Sn}
The sequence of shooting values problems {(Sn)|n = 1, ...,N} can be computed
in a parallel way, provided one is able to predict accurately, the coarse grid
{0,T1,T2, ...,TN} and the values of the solution Y (t) on that grid, i.e. {Y0,Y1,Y2, ...,YN}.

Rescaling and use of local time and solution:
Dealing uniformly with {(Sn)} is then done through a rescaling technique that
changes the variables {t,Y (t)} on each time-slice [Tn−1,Tn], into a new pair {s,Zn(s)}:

t = Tn−1 +β (Yn−1)s, (2.1)
Y (t) = Yn−1 +D(Yn−1)Zn(s). (2.2) (2)

where β (Yn−1) ≡ βn > 0 and D(Yn−1) ≡ Dn ∈ Rk×k is an invertible matrix. Thus,
each (Sn) is now equivalent to a shooting value problem, whereby one seeks the
pair {sn, {Zn(s) ∈ Rk, 0≤ s≤ sn}}, such that:

(S ′
n)


dZn
ds = Gn(s,Zn), 0 < s < sn

Zn(0) = 0,
Hn(Zn(s)) 6= 0, 0 < s < sn Hn(Zn(sn)) = 0,where:

Gn(s,Zn) = βnD−1
n F(Tn−1+βns,Yn−1+DnZn) and Hn(Zn) = E(Yn−1+DnZn,Yn−1).

Note the following:
- The rescaled time s = t−Tn−1

βn
and solution Zn(s) are set to 0 at the beginning of

every slice.
- The functions Gn and Hn depend on the starting values Tn−1 and Yn−1.
- The solution function Zn(.) depends on βn, on each nth slice, in the sense that
different choices of βn lead to different functions Zn(.). However, independently of
βn and Dn, one has the following identities:

∀βn,

{
βnsn = Tn−Tn−1, (3.1)
Zn(sn) = D−1

n (Yn−Yn−1) . (3.2) (3)

These identities are at the core of our prediction model, whereas, if the choice of
β (Yn−1) and D(Yn−1) are such that the behavior of the pair {sn,Zn(sn)} can be accu-
rately predicted, then the coarse grid {Tn} and the values {Yn} of Y (t) on that grid
can also be obtained from (3).

Similarity concepts:
The change of variables (2) and the consequent rescaled problems (S ′

n) have been
originally proposed in [8] and [11] to handle initial value problems (S) which solu-
tions explode in a finite time. As the computation of these problems present a high
sensitivity to the sharp variations of the solution on a short time, one way to circum-
vent this issue is through appropriate choices of {βn,Dn,Hn(.)}, so that one inherits
“uniformity” on the rescaled systems {(S ′

n)}. This is done by selecting appropri-
ately the rescaling parameter βn so as to insure uniform boundedness, independently
of n, of {sn}, ‖Zn‖, ‖Gn‖ and ‖JGn‖ (where JGn is the jacobian of Gn), thus control-
ling the stiffness of the problem. In that way, placing the same fine solver on each
of the (S ′

n), provides a robust algorithm for solving (S), as proved in [9].
Using this approach for parallel in time solving was done first in [10] and more
extensively in [7] on the basis of properties satisfied by the pair {sn,Zn(sn)}.

4 Noha Makhoul Karam, Nabil Nassif, and Jocelyne Erhel

Definition 1. Invariance: If the rescaling parameters {βn,Dn} are such that
∀n, Gn(., .) = G1(., .) and Hn(.) = H1(.), then the rescaled systems (S ′

n) are in-
variant and are all equivalent to the shooting Problem (S ′

1).
In that case one has ∀n, Zn(.) = Z1(.), sn = s1 and Zn(sn) = Z1(s1). Invariance is an
ideal and rare case: one unique time-slice allows getting the solution on all time-
slices through a simple change of variables. A weaker property is given as follows.
Definition 2. Asymptotic similarity: it occurs when the rescaling parameters {βn,Dn}
are such that limn→∞ {sn,Zn(sn)} = {sL,ZL(sL)}, where {sL,ZL(sL)} are obtained
from a limit shooting value problem:

(SL)


dZL
ds = GL(s,ZL), 0 < s < sL

ZL(0) = 0,
HL(ZL(s)) 6= 0, 0 < s < sL HL(ZL(sL)) = 0.

In this case, the use of (3) for a prediction purpose is possible after a sequential run
on a number of slices ns, at which point one has:

max
n>ns
{max{|sn− sn−1|, ||Zn(sn)−Zn−1(sn−1)||}} ≤ tol, (4)

where tol is a user’s computation tolerance. We finally consider, based on (4), a
weak case of similarity, which can be used in spite of the lack of any evidence of
invariance or asymptotic similarity.
Definition 3. Numerical Similarity is considered to be reached, whenever, there
exists 2 integers, n0 ≥ 1 and nr sufficiently large, such that:

max
n0≤n≤n0+nr

{max{|sn− sn−1|, ||Zn(sn)−Zn−1(sn−1)||}} ≤ tol, (5)

In that case, as in (4), one lets ns = n0 +nr.
Remark: in the case where all components of Yn are distinct from 0, then (3.2)
is equivalent to Yn = Dn(e+Zn(sn)), where e ∈ Rk is a vector of 1’s, and Zn(sn) =

D−1
n Yn − e can be expressed in terms of the vector Rn = D−1

n Yn = { Yn,i
Yn−1,i
}

(ratio-vector). The behavior of {Zn(sn)} is then equivalent to that of {Rn}.
Data analysis and prediction model:
The similarity properties determine the behavior of the ordered pairs {{sn,Zn(sn)}}
or {{sn,Rn}} and allow the prediction of the pairs {{Tn,Y (Tn)}}, without any in-
tegration on the coarse grid. Hence, on the basis of Asymptotic or Numerical
Similarity, let ns be the number of slices on which a sequential run has been
conducted with (5) being reached. We seek a prediction data model on the pairs
{{sn,Rn}|n > ns}. For that purpose, data analysis is carried out on the sequence:
D (0) = {{sn,Rn}|n = n0, ...,ns}. It leads to the model:

{{sn,Rn}|n > ns}= Fit(D (0)), (6)
extrapolating best onto next slices. In case of asymptotic similarity, the data model
should also take into consideration the convergence of {sn,Rn} to {sL,RL} (see [7]).
Besides, this model allows to get an estimate on N0, least number of slices such that:

N0−1

∑
n=ns

βnsn < T ≤
N0

∑
n=ns

βnsn. (7)

The case of a membrane problem:
Consider the second order IVP where one seeks y : [0,T]−→ R (T ≤ ∞) such that:{

y
′′ −b|y′ |q−1 y

′
+ |y|m−1 y = 0, t > 0, (8.1)

y(0) = y1,0, y
′
(0) = y2,0. (8.2)

(8)

An Adaptive Parallel-in-Time Method with application to a membrane problem 5

This model describes the motion of a membrane element linked to a spring. When
b > 0, the speed-up of the motion causes a “blow-up” of the solution, case that has
been studied by Souplet et al in [13]. In [11], the rescaling method was applied to
the case m > 1 and q = 2m

m+1 where the solution explodes in finite time. We consider
now the case 0<m≤ q≤ 2m

m+1 ≤ 1. Carrying numerical integration of (8) has shown
global existence of the solution on [0,∞) with (a) limt→∞ |y(t)|= limt→∞ |y

′
(t)|=∞,

(b) y(t) and y
′
(t) admit an infinite number of roots in the interval [0,∞).

Such behavior makes the solution, in the phase-plane (y,y′), spiral outwards about
the origin toward infinity. The first step for solving (8) is to write it as a system of
first order ODE’s. Letting Y1(t) = y(t) and Y2(t) = y′(t) makes problem (8) equiva-
lent to an initial value problem of the form (S) where:

Y0 =

(
Y1,0
Y2,0

)
and Y (t)=

(
Y1(t)
Y2(t)

)
, with F(t,Y)=F(Y)=

(
Y2

b|Y2|q−1 Y2 − |Y1|m−1 Y1

)
.

Because of the oscillatory behav-
ior of the solution, one possible
way to end the nth slice could be
whenever the trajectory of the so-
lution, in the Y1Y2 phase plane, in-
tersects the curve Y2 = |Y1|

m+1
2 in

the first quadrant, thus complet-
ing an almost full rotation. The
oscillating behavior of the solu-
tion makes such EOS condition
guaranteed to be reached. Thus,
one chooses:

EOS condition for a membrane problem

∀W =

(
W1
W2

)
∈ R2, H(W) =W2−|W1|

m+1
2 , and βn = |Yn−1,1|

1−m
2 = |Yn−1,2|

1−m
m+1 .

This yields the rescaled systems:
dZn,1

ds = 1+Zn,2,
dZn,2

ds = bγn|1+Zn,2|q−1(1+Zn,2)−|1+Zn,1|m−1(1+Zn,1), 0 < s≤ sn,
Zn,1(0) = Zn,2(0) = 0
H(Zn(s)) 6= 0, 0 < s < sn and H(Zn(sn)) = 0,

(9)

with γn = |Yn−1,1|
m+1

2 (q− 2m
m+1) ≤ 1. Thus, one checks the following [7]:

1. If q = 2m
m+1 , ∀m ≤ 1, the rescaled systems (9) are invariant and equivalent to

finding Z(s) = (Z1(s),Z2(s)), such that:
dZ1
ds = 1+Z2,

dZ2
ds = b|1+Z2|q−1(1+Z2)−|1+Z1|m−1(1+Z1), 0 < s≤ s1,

Z1(0) = Z2(0) = 0
H(Z(s)) 6= 0, 0 < s < s1 and H(Z(s1)) = 0,

(10)

2. If 0 < m≤ q < 2m
m+1 ≤ 1, then the rescaled systems (9) are asymptotically similar

to the limit problem:

6 Noha Makhoul Karam, Nabil Nassif, and Jocelyne Erhel
dZL,1

ds = 1+ZL,2,
dZL,2

ds =−|1+ZL,1|m−1(1+ZL,1), 0 < s≤ sL,
ZL,1(0) = ZL,2(0) = 0
H(ZL(s)) 6= 0, 0 < s < sL and H(ZL(sL)) = 0,

(11)

4 Adaptive Parallel in Time (APTI) algorithm
The superscripts p and c denote predicted and calculated values respectively.
At the core of parallel in time algorithms, one must have a fine solver F that uni-
formly handles each of the rescaled problems (S ′

n). It is a software function defined
by: (F) [Y c

n ,T
c

n] = F (Y p
n−1,T

p
n−1,βn,Dn,F,E, tol),

on the basis of the functions F and E, given in (Sn), with Dn = D(Yn−1) and βn
selected to insure obtaining a prediction model on the pairs {sn,Zn(sn)}; tol is a
global user’s tolerance, the same as that used to check (4) or (5). The function F is
designed so that:

max
{ ||Yn−1−Y p

n−1||
||Yn−1||

,
|Tn−1−T p

n−1|
|Tn−1|

}
=O(tol)⇒max

{
||Yn−Y c

n ||
||Yn||

,
|Tn−T c

n |
|Tn|

}
=O(tol).

(12)
Such fine solver F is discussed in [9], with a proof of (12) in the case when E is
given by E(U,W) = ||D−1(W)(U −W)||−S; F takes in charge changing (Sn) to
(S ′

n), then uses a high order explicit Runge-Kutta method with a local tolerance
tol1 << tol to insure (12).
Theorem 1. Assuming (12) is satisfied, then:max

{
||Yn−1−Y p

n−1||
||Yn−1||

,
|Tn−1−T p

n−1|
|Tn−1|

}
= O(tol)

max
{
||Y p

n −Y c
n ||

||Y p
n ||

, |T
p

n −T c
n |

|T p
n |

}
= O(tol)

=⇒max


||Yn−Y p

n ||
||Yn||
|Tn−T p

n |
|Tn|

= O(tol).

An iterative process can now be initiated using a parallel architecture with P pro-
cessors. For increasing the speed-up, we adopt a strategy of duplication of sequential
tasks on all processors (that reduces communications and avoids idle time).

Initialization step duplicated on all P processors:
- Set the iteration index l to 0.
- Solve sequentially problem {(S ′

n)} on m(0) = ns time-slices using F .
- Obtain {(T (0)

j ,Y (0)
j)| j = 0, ...,m(0)} and let T (0) = max{T (0)

j }.
- Compute N0 according to estimate (7).

Allocation of tasks on the P processors: At this point, the remaining time-slices
(n > m(0)) are statically allocated, based on a cyclic distribution: processor pr will
be assigned slices number n where (n−m(0)) is congruent to pr mod P. This pro-
vides an optimized synchronization and a load balanced distribution of the work.

While T (l) < T (Iterative steps):
1. All P processors duplicate the task of predicting {(T p

j ,Y
p
j)| j = m(l)+1, ...,Nl},

using Fit(D (l)) from (6).
2. Every processor pr ∈ {1, ...,P} executes in parallel the following:

An Adaptive Parallel-in-Time Method with application to a membrane problem 7

a. pr solves its first slice n (n≥ m(l)+1) and computes Y c
n and T c

n using F .
b. Processor pr computes max{||Y p

n −Y c
n ||/||Y

p
n ||, |T p

n −T c
n |/|T

p
n |}.

c. While max{||Y p
n −Y c

n ||/||Y
p

n ||, |T p
n −T c

n |/|T
p

n |} ≤ tol and n < Nl , processor
pr takes on its assigned next slice, based on theorem 1, and repeats 2(a) (b).

d. If max{||Y p
n −Y c

n ||/||Y
p

n ||, |T p
n −T c

n |/|T
p

n |}> tol, processor pr stops the exe-
cution (the remaining time-slices need not to be solved). It sends to the master
processor (processor 1) the index I (pr) of the last slice having converged,
together with the new {T c

n ,Y
c
n }n>m(l) .

3. Master processor synthesizes the received data and updates the following:
a. Iteration number l := l+1 and number of so far solved slices m(l) :=maxpr I (pr).

b.
{(

T (l)
j ,Y (l)

j

)
| j = 0, ...,m(l)

}
with

(
T (l)

j ,Y (l)
j

)
:=
(

T (l−1)
j ,Y (l−1)

j

)
, ∀ j = 0, ...,m(l−1)}.

c. T (l) := max{T (l)
j }, and N(l) from estimate (7), and the set D(l) to be used by

the function Fit (as set in (6)).
Then, the master processor sends T (l), N(l) and D(l) to all other processors.

End While
Remark: In case of autonomous problems F(t,Y)≡ F(Y), one needs not to predict
the starting values {T p

n } of the time. Given {Y p
n } only, the rescaling technique allows

solving (S′n) in a local time s, thus providing in parallel {sn} and the size T c
n −T c

n−1 =
∆T c

n = βnsn of time-slices. Then, {T c
n } is reconstituted from received {∆T c

n }.

5 Numerical results
The table below summarizes some results obtained by the above APTI algorithm on
the membrane problem, in the case of asymptotic similarity when 0 < m≤ q < 2m

m+1
and for 8 combinations of the problem parameters m and q, with b = 1. The total
number of slices N, and therefore the interval of integration [0,T], corresponds to
the maximum (or almost) number preventing the explosive solution from exceeding
the machine capacity. The total number of iterations vary from one case to another,
but in all cases, the results show how small is this number compared to the total
number of slices. This ascertains the fast convergence of the method when applied
to this type of problems. Si represents the speed-up obtained when using i proces-
sors (compared to the sequential run time of the same rescaling method) and Smax

i
is the corresponding maximum speed-up stated by Amdhal’s law. The following
tolerances have been used: tol = 5×10−6 (global) and tol1 = 10−14 (local).

Case 1 2 3 4 5 6 7 8
m 0.8 0.7 0.7 0.6 0.6 0.6 0.5 0.5
q 0.84 0.74 0.77 0.66 0.69 0.72 0.55 0.60
T ≈ 1014 ≈ 1029 ≈ 1028 ≈ 1014 ≈ 1018 ≈ 1030 ≈ 1017 ≈ 1025

N 65000 65000 50000 65000 65000 65000 65000 65000
ns 1499 1143 1471 1156 1414 1993 1053 1385
nI 6 11 12 35 28 23 5 5
S2 1.88 1.93 1.93 1.96 1.94 1.91 1.96 1.94

Smax
2 1.95 1.97 1.94 1.97 1.96 1.94 1.97 1.96
S4 3.57 3.66 3.50 3.59 3.56 3.44 3.68 3.63

Smax
4 3.74 3.80 3.68 3.80 3.75 3.66 3.81 3.76
S8 6.47 6.76 6.23 6.57 6.38 6.05 6.82 6.59

Smax
8 6.89 7.12 6.63 7.11 6.94 6.59 7.19 6.96

8 Noha Makhoul Karam, Nabil Nassif, and Jocelyne Erhel

Actually, the method has
been tested on the previous 8
cases, using 2, 3, 4, 5, 6, 7,
and 8 processors. The oppo-
site figure shows how the val-
ues of speed-up, averaged on
the 8 cases above, vary with
the number of processors and
how close it is to the maxi-
mum speed-up.

Conclusion
The application of the adaptive parallel in time algorithm we have presented is not
unconditional and requires the prior knowledge of the solution behavior and the ex-
istence of an EOS condition inducing the predictability of the end-of-slice values.
However, when applicable, APTI algorithm yields a fast convergence due to accu-
rate predictions that do not require any sequential integration on the coarse grid.
Besides, not all the remaining time-slices are solved at each iteration and communi-
cations are minimized in number and size. Our future work aims at experimenting
the method on additional application problems.

References

1. Bal, G., Wu, Q.: Symplectic parareal. In: M. Bercovier, M. Gander, R. Kornhuber, O. Widlund
(eds.) DD08, Lecture Notes in computational Science and Eng., pp. 189–202. Springer (2008)

2. Chartier, P., Philippe, B.: A parallel shooting technique for solving dissipative ode’s. Comput-
ing 51, 209–236 (1993)

3. Erhel, J., Rault, S.: Algorithme parallèle pour le calcul d’orbites. Techniques et Sciences
Informatiques 19, 649–673 (2000)

4. Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators. Int. J. Numer. Meth.
Engng 58, 1397–1434 (2003)

5. Lions, J., Maday, Y., Turinici, G.: Résolution d’edp par un schéma en temps “pararéel”.
C.R.Acad.Sci.Paris 332, 661–668 (2001)

6. Maday, Y., Bal, G.: A parareal time discretization for non-linear pde’s with application to the
pricing of an american put. In: I.H. et al (ed.) DD02, Comp. Sc., pp. 189–202. Springer (2002)

7. Makhoul-Karam, N.: Time-slicing, rescaling & ratio-based parallel time integration. TEL
(2012). URL http://tel.archives-ouvertes.fr/tel-00743132

8. Nassif, N., Fayad, D., Cortas, M.: Sliced-time computations with rescaling for blowing-up
solutions to init. val. pbs. In: S.S. et al. (ed.) ICCS 05, Comp. Sc., pp. 58–65. Springer (2005)

9. Nassif, N., Makhoul-Karam, N., Erhel, J.: Globally adaptive explicit numerical methods for
exploding systems of ordinary differential equations. APNUM (2011). URL http://dx.
doi.org/10.1016/j.apnum.2011.09.009

10. Nassif, N., Makhoul-Karam, N., Soukiassian, Y.: A new approach for solving evolution prob-
lems in time-parallel way. In: V.A. al (ed.) ICCS 06, Comp. Sc., pp. 148–155. Springer (2006)

11. Nassif, N., Makhoul-Karam, N., Soukiassian, Y.: Computation of blowing-up solutions for
second-order differential equations using re-scaling techniques. JCAM 227, 185–195 (2009)

12. Nievergelt, J.: Parallel methods for integration of ode’s. Comm. ACM 7, 731–733 (1964)
13. Souplet, P.: Critical exponents, special large-time behavior and oscillatory blow-up in nonlin-

ear ode’s. Differential and Integral Equations 11, 147–167 (1998)

