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Summary. We consider the question of domain decomposition for evolution prob-
lems with discontinuous coefficients. We design a method relying on four ingredients:
extension of the optimized Schwarz waveform relaxation algorithms as described in
[1], discontinuous Galerkin methods designed in [7], time windows, and a general-
ization of the projection procedure given in [6]. We so obtain a highly performant
method, which retains the approximation properties of the discontinuous Galerkin
method. We present numerical results, for a two-domains splitting, to analyze the
time-discretization error and to illustrate the efficiency of the DGSWR algorithm
with many time windows. This analysis is in continuation with the approach initi-
ated in DD16 [2, 5], with applications in climate modeling, or nuclear waste disposal
simulations.

1 Introduction

In order to be able to perform long time computations in highly discontinuous
media, it is of importance to split the computation into subproblems for which
robust and fast solvers can be used. This happens for instance in climate
modeling, where heterogeneous climatic models must be run in parallel, or
in nuclear waste disposal simulations, where different materials have different
behaviors.

Optimized Schwarz waveform relaxation algorithms have proven to provide
an efficient approach for convection-diffusion problems in one [1] and two
dimensions [8]. The SWR algorithms are global in time, and therefore are
well adapted to coupling models; they lead to fast and efficient solvers, and
they allow for the use of non conforming space-time discretizations. Based
on this approach, our final objective is to propose efficient algorithms with a
high degree of accuracy, for heterogeneous advection-diffusion problems. The
strategy we develop here is to split the time interval into time windows. In each
window we will perform a small number of iterations of an optimized Schwarz
waveform relaxation algorithm. The subdomain solver is the discontinuous
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Galerkin methods in time, and classical finite elements in space. The coupling
between the subdomains is done by the extension of a projection procedure
written in [6].

After defining our model problem in Section 2, we recall in Section 3 the
Schwarz waveform relaxation algorithm, with optimized transmission condi-
tions of order 1 in time, as introduced in [2, 5]. The general discontinuous
Galerkin formulation is given in Section 4. In Section 5, we introduce the dis-
crete algorithm in time in the nonconforming case. The projection between
arbitrary grids is performed by an efficient algorithm based on the method
introduced in [6]. In Section 6, numerical results illustrate the validity of our
approach, in particular the superconvergence result proved in [3] for the heat
equation and homogeneous Dirichlet boundary conditions is valid.

2 Model Problem

We consider the advection-diffusion problem in Ω = (a, b):

Lu ≡ ∂u

∂t
+

∂

∂x
(a(x)u) − ∂

∂x
(ν(x)

∂u

∂x
) = f in Ω × (0, T ),

u(·, 0) = u0 in Ω,
u(a, ·) = u(b, ·) = 0 in (0, T ).

(1)

The advection coefficient a(x), and the viscosity ν(x) are in L∞(Ω). ν is
bounded from below by a positive constant and we suppose here the advection
coefficient to be positive. We are interested in a coupling procedure for a
problem with discontinuities in the coefficients, and we suppose a and ν to be
continuous in subregions Ωj =]xj−1, xj [ of Ω, but possibly discontinuous at
interfaces xj . We shall write

a±j = lim
x→x±j

a(x), ν±j = lim
x→x±j

ν(x).

Problem (1) is equivalent to finding {uj} j=1,...,J solutions of the advection-
diffusion equation in each subdomain Ωj , with the physical transmission con-
ditions in (0, T )

uj(x
−
j , ·) = uj+1(x

+
j , ·), (ν−j

∂

∂x
− a−j )uj(x

−
j , ·) = (ν+

j

∂

∂x
− a+

j )uj+1(x
+
j , ·),

with uj = u|Ωj
. In view of applications for long-time computations, we split

the time domain into windows and we intend to design an algorithm which
requires very few iterations per time window. This will be achieved with an
optimized Schwarz waveform relaxation algorithm.
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3 Optimized Schwarz Waveform Relaxation with Time
Windows

The time interval is divided into time windows, [0, T ] = ∪Nw
N =0[TN , TN+1]. In

each window we perform successively nN iterations of the Schwarz waveform
relaxation algorithm with nN ≥ 2 as small a possible, taking as initial value
the final value of the last iterate of the algorithm in the previous window.
Suppose {ũj} is computed that way on (0, TN). We compute now {ũj} on the
next window by the algorithm, for n = 1, ..., nN :

Lun
j = f in Ωj × (TN , TN+1),

with the initial value un
j (·, TN) = ũj(·, T−

N ), and the transmission conditions
in (TN , TN+1),

(−ν+
j−1

∂

∂x
+ a+

j−1Id+ S−j )unj (x+
j−1, ·) = (−ν−j−1

∂

∂x
+ a−j−1Id+ S−j )un−1

j−1 (x−j−1, ·),

(ν−j
∂

∂x
− a−j Id+ S+

j )unj (x−j , ·) = (ν+
j

∂

∂x
− a+

j Id+ S+
j )un−1

j+1 (x+
j , ·).

It was proved in [5, 2] that a suitable choice of the operators S±
j , leads to

convergence in J iterations. However these “transparent” operators are not
easy to handle, and we use instead transmission operators of the form:

S−
j =

p−j − a−j
2

Id+
q−j
2

∂

∂t
, S+

j =
a+

j + p+
j

2
Id+

q+j
2

∂

∂t
. (2)

The initial guesses on the interfaces have to be prescribed, this will be done
on the discrete level in Section 6. We then define ũj on (TN , TN+1) by unN

j .
In order to reduce the number of iterations, we need to make the conver-
gence rate as small as possible. This can be achieved by choosing carefully
the parameters p±j and q±j such as to minimize the local convergence rate, i.e.
between two subdomains. Details for the optimization on the theoretical level
for continuous coefficients can be found in [1], and for preliminary results in
this case see [5]. For positive coefficients p±j and q±j , the convergence of the
algorithm can be proved by the method of energy.

4 Time Discontinuous Galerkin Method

We introduce the discretization of a subproblem in one time window I =
(TN , TN+1) and one interval Ωj . The subproblem at step n of the SWR pro-
cedure for an internal subdomain is to find v such that




Lv = f in Ωj × I,
v(·, TN) = v0 in Ωj ,

(−ν+ ∂

∂x
+ β−Id+ γ−

∂

∂t
) v(x+

j−1, ·) = g− in I,

(ν−
∂

∂x
+ β+Id+ γ+ ∂

∂t
) v(x−j , ·) = g+

j in I.

(3)
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Subproblems at either end of the interval have one boundary condition re-
placed by a Dirichlet boundary condition. Let Vj = H1(Ωj). This problem
has the weak formulation: find v in C0(0, T ;L2(Ωj)) ∩ L2(0, T ;H1(Ωj)) such
that v(·, TN) = v0 and

((
dv

dt
(t), ϕ)) + b(v(t), ϕ) = (f(t), ϕ) + g−(t)ϕ(xj−1) + g+(t)ϕ(xj), ∀ϕ ∈ Vj ,

with (·, ·) the scalar product in L2(Ωj), and for ϕ,ψ in Vj :





((ϕ,ψ)) = (ϕ,ψ) + γ−ϕ(xj−1)ψ(xj−1) + γ+ϕ(xj)ψ(xj),

b(ϕ,ψ) = (ν(x)
∂ϕ

∂x
,
∂ψ

∂x
) + (a(x)ϕ,

∂ψ

∂x
)

+ β−ϕ(xj−1)ψ(xj−1) + β+ϕ(xj)ψ(xj).

For positive β± and γ±, this problem is well-posed in suitable Sobolev spaces,
see [1]. For the discretization of (3) in time, we use the discontinuous Galerkin
method [7] which is a Galerkin method with discontinuous piecewise polyno-
mials of degree q ≥ 0 defined as follows. Let T be a decomposition of I into
I = ∪K

k=1Ik with Ik = [tk−1, tk], and ∆tk = tk − tk−1. For any space V , we
define

Pq(V ) = {ϕ : I → V, ϕ(t) =

q∑

i=0

ϕit
i, ϕi ∈ V }

Pq(V, T ) = {ϕ : I → V, ϕ|Ik
∈ Pq(V ), 1 ≤ k ≤ K}.

As the functions in Pq(V, T ) may be discontinuous at the mesh points tk, we
define ϕk,± = ϕ(tk ± 0). The discontinuous Galerkin Method, as formulated
in [7], defines recursively on the intervals Ik, an approximate solution U of
(4) in Pq(Vj , T ), by





U0,− = v0,

∀ϕ ∈ Pq(Vj) :

∫

Ik

[((
dU

dt
, ϕ)) + b(U,ϕ)] dt+ ((Uk−1,+, ϕk−1,+)) =

∫

Ik

[(f(t), ϕ(t)) + g−(t)ϕ(xj−1) + g+(t)ϕ(xj)]dt+ ((Uk−1,−, ϕk−1,+)).

(4)

Theorem 1. For f ∈ L∞(0, T ;L2(Ωj)), g
± ∈ L∞(0, T ), and β±, γ± > 0,

equation (4) has a unique solution U ∈ Pq(Vj , T ). Moreover, for sufficiently
smooth v, we have the error estimate:

‖v − U‖L∞(I;L2(Ωj)) ≤ CiCs
q ( max

1≤k≤K
Lk)‖∆tq+1v(q+1)‖L∞(I;L2(Ωj)), (5)

where ∆t is the local time step defined in Ik by ∆t(s) = ∆tk, C
s
q is a stability

constant related to the dG-discretization, independent of T, u, ∆t, and U . Ci

is an interpolation constant depending only on q, and Lk = 1 + log(tk/∆tk).
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Proof. Let H = L2(Ωj) × R × R with inner product (·, ·)H defined for
U1 = (ϕ1, α

−
1 , α

+
1 ) and U2 = (ϕ2, α

−
2 , α

+
2 ) in H by (U1, U2)H = (ϕ1, ϕ2) +

γ−j α
−
1 α

−
2 +γ+

j α
+
1 α

+
2 . Let D(A) = {U = (ϕ,α−, α+), ϕ ∈ H2(Ωj), ϕ(xj−1) =

α−, ϕ(xj) = α+}. Let A : D(A) ⊂ H → H defined by

A =




− ∂

∂x
(ν
∂

∂x
) +

∂

∂x
(a Id) 0 0

ν+
j−1

γ−j

∂

∂x

β−
j

γ−j
0

ν−j

γ+
j

∂

∂x
0

β+
j

γ+
j




Then, the proof of Theorem 1 is based on the theoretical result in [4], since
A is the infinitesimal generator of an analytic, uniformly bounded semi-group.

Remark 1. An analogous result holds in higher dimension and for general
boundaries, as soon as they do not intersect.

5 The Discontinuous Galerkin Schwarz Waveform
Relaxation

Let us consider the case where the time steps are different in the subdomains:
in each Ωj , let Tj be a partition of the time interval into I = ∪K

k=1I
j
k with

Ij
k = [tjk−1, t

j
k]. Then, we need a projection procedure to transfer the bound-

ary values from one domain to his two neighbors. We now define the precise
procedure in domain Ωj . Let (g−,n−1

j , g+,n−1
j ) be given in Pq(R, Tj). Then,

one iteration of the SWR method consists in the following steps:

g−,n−1
j ∈ Pq(R, Tj) g+,n−1

j ∈ Pq(R, Tj)
ց ւ

Unj ∈ Pq(Vj , Tj)

ւ ց

g̃−,nj =(ν+
j−1∂x −a+

j−1 +S+
j−1)Unj (x+

j−1, ·)
g̃−,nj ∈ Pq(R, Tj)

g̃+,n
j =(−ν−j ∂x +a−j −S−j+1)Unj (x−j , ·)

g̃+,n
j ∈ Pq(R, Tj)

↓ ↓
g+,n
j−1 = Pj,j−1g̃

−,n
j ∈ Pq(R, Tj−1) g−,nj+1 = Pj,j+1g̃

+,n
j ∈ Pq(R, Tj+1)

Un
j is the solution of (4) in Ωj with coefficients β±

j and γ±j given by (2),

and data (g−,n−1
j , g+,n−1

j ). Pi,j is the orthogonal L2 projection on Pq(R, Tj),
restricted to Pq(R, Ti).
Note that the computations in different subdomains on the same time window
(TN , TN+1) can be done in parallel. One could even think of using multigrid
in time or asynchronous algorithm.



216 L. Halpern, C. Japhet

6 Numerical Results

In order to see the effect of the coupling of discontinuous Galerkin with the
domain decomposition algorithm, we perform numerical simulations with two
subdomains only. We choose ν and a to be constant in each subdomain. For
the space discretization, we replace Vj by a finite-dimensional subspace V h

j

(standard P1 finite element space) of Vj in (4).
Our computations are performed with q = 1 in the discontinuous Galerkin
method. In that case a superconvergence result was proved in [3] for the
heat equation and homogeneous Dirichlet boundary conditions: under suitable
assumptions on the space and time steps, the accuracy is of order 3 in time
at the discrete time levels tk: let ‖ · ‖k,j = ‖ · ‖L∞(Ik;L2(Ωj)),

‖v(tk) − Uk,−‖L2(Ωj)

≤ Ck max
1≤k≤K

{
min

0≤ℓ≤3
∆tℓk‖∂(ℓ)

t v‖k,j + min
1≤ℓ≤2

hℓ‖Dℓv‖k,j

}
, (6)

where h is the mesh size, Ck = C(Lk)
1
2 with C a constant independent of

T, v, ∆t, and U . Our numerical results will illustrate both estimates (5) and
(6).

In the sequel, we denote by “1-window converged solution”, the iterate
of the optimized Schwarz waveform relaxation algorithm in one time window
(the whole time interval), for which the residual on the boundary (i.e. ‖g±,n

j −
g±,n−1

j ‖) is smaller than 10−8.

6.1 An Example of Multidomain Solution with Time Windows

In this part, we consider Problem (1) on Ω =]0, 6[ with f ≡ 0, and the

final time is T = 2. The initial value is u0 = e−3(2.5−x).2 . Ω is split into two
subdomains Ω1 = (0, 3) and Ω2 = (3, 6). In each subdomain the advection and
viscosity coefficients are constant, equal to a1 = 0.1, ν1 = 0.2, a2 = ν2 = 1.
The mesh size is h = 0.06 for each subdomain. The number of time grid
points in each window is n1 = 61 for Ω1, and n2 = 25 for Ω2. We denote
by “6-windows solution”, the approximate solution computed using 6 time
windows, with nN = 2 iterations of the optimized Schwarz waveform relaxation
algorithm in each time window. The initial guess g±,0

j on the interface in time
window (TN , TN+1) is given at time TN by the exact discrete value in the
previous window, and is taken to be constant on the time interval. In Figure
1 we observe that at the final time T = 2, the 6-windows solution and the
1-window converged solution cannot be distinguished. Since the cost of the
computation is much less with time windows, this validates the approach.
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6.2 Error Estimates

Constant Coefficients

We first analyze the error in (4) for constant coefficients a ≡ 1, ν ≡ 1. The
exact solution is u(x, t) = cos(x) cos(t), in [−π/2, π/2]× [0, 2π]. The interface
is at x = 1. The mesh size is h = π ·10−4, for each subdomain. The time steps
are initially ∆t1 = 2π/4 in Ω1 and ∆t2 = 2π/6 in Ω2, and thereafter divided
by 2 several times. Let ∆t = max(∆t1,∆t2). Figure 2 shows the norms of
the error involved in the estimates (5) and (6). The numerical results fit the
theoretical estimates.
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T
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u1 at SWR iteration 2
u2 at SWR iteration 2
converged 1−window solution

Fig. 1. 1-window converged solution (solid line) and 6-windows solution (star line
for Ω1 and diamond line for Ω2), at time t=T=2.
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Fig. 2. Error in L∞(I;L2(Ωj))-norm (on the left) and in L2(Ωj)-norm at the final
time t = T (on the right), versus the time step ∆t, for Ω1 (star line) and for Ω2

(diamond line), in the case of constant coefficients.
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Fig. 3. L2(Ωj) error at the final time t = T versus the time step ∆t, for Ω1 (on the
left) and Ω2 (on the right), for the meshes Mesh 1,2,3,4 , in the case of discontinuous
coefficients.

Discontinuous Coefficients

We consider the configuration in Section 6.1 with one time window. We ob-
serve the error between the 1-window converged solution and a reference solu-
tion (the 1-window converged solution on a very fine space-time grid), versus
the time step. The mesh size is h = 3 · 10−4 for each subdomain. We consider
four initial meshes in time

• Mesh 1: a uniform conforming finner grid with ∆t1 = ∆t2 = T/6,
• Mesh 2: a nonconforming grid with ∆t1 = T/6 and ∆t2 = T/4,
• Mesh 3: a nonconforming grid with ∆t1 = T/4 and ∆t2 = T/6,
• Mesh 4: a uniform conforming coarser grid with ∆t1 = ∆t2 = T/4.

Thereafter ∆tj , j = 1, 2, is divided by two at each computation. Figure 3
shows the error versus the time step ∆t = max(∆t1,∆t2), for these four
meshes, in Ω1 (on the left) and in Ω2 (on the right). The results show that the
L2(Ωj) error at discrete time points tends to zero at the same rate as ∆t3, and
this fits with the error estimate (6). On the other hand, we observe that the two
curves corresponding to the nonconforming meshes are between the curves of
the conforming meshes. We obtain similar results for the L∞(I;L2(Ωj)) error,
which fits with (5).

7 Conclusions

We have proposed a new numerical method for the advection-diffusion equa-
tion with discontinuous coefficients. It relies on the splitting of the time inter-
val into time windows. In each window a few iterations of a Schwarz waveform
relaxation algorithm are performed by a discontinuous Galerkin method, with
projection of the time-grids on the interfaces of the spacial subregions. We have
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shown numerically that our method preserves the order of the discontinuous
Galerkin method.

References

[1] D. Bennequin, M.J. Gander, and L. Halpern. Optimized Schwarz Wave-
form Relaxation for convection reaction diffusion problems. Technical Re-
port 24, LAGA, Université Paris 13, 2004.
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