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1 Introduction

The solution to contact problems between solid bodies poses difficulties to
solvers because in general neither the distributions of the contact tractions
throughout the areas currently in contact nor the configurations of these
areas are known a priori. This implies that the contact problems are in-
herently strongly nonlinear. Probably the most popular solution method is
based on direct iterations with the non-penetration conditions imposed by
the penalty method ([Z93] or [W02]). The method enables easily enhance
other non-linearity such as in the case of large displacements.

In this paper we are concerned with application of a variant of the FETI
domain decomposition method that enforces feasibility of Lagrange multipliers
by the penalty [DH04b]. The dual penalty method, which has been shown
to be optimal for small displacements is used in inner loop of the algorithm
that treats large displacements. We give results of numerical experiments that
demonstrate high efficiency of the FETI method

2 Primal Penalty Method

The boundary conditions generated by bodies in contact are formally of the
same form as the boundary conditions induced by externally applied surface
tractions. However, the difficulties with the contact tractions is that in gen-
eral we do not know either their distributions throughout the areas currently
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in contact, or shapes and magnitudes of these areas until we have run the
problem. Their evaluations have to be part of the solution.

Consider the frictionless contact henceforth. There exist two basic methods
to remove the contact constraints. The first one is the Lagrange multiplier
method and the second one the penalty method, or in the sense of this paper
the primal penalty method. With the latter method constraints are enforced
by the penalization. The penalization of the Kuhn–Tucker conditions in the
normal direction is established by introducing the penalty parameter εn in

fn = εn〈g〉 (1)

where fn stands for the normal contact force, g denotes the depth of interpen-
etration of the bodies in contact and 〈.〉 = 0.5[(.) + |.|] is known as Macauley
bracket. It returns the non-negative part of its operand. The normal penalty
can be seen as stiffness of a spring placed between corresponding contact-
ing surfaces. The penalty method yields exact solution if the penalty tends
to infinity, but otherwise permits certain violation of the constraint that the
interpenetration has to be zero. In practice it is necessary to estimate the
magnitude of the penalty parameter to limit the penetration, yet it should
not be too large to avoid ill-conditioning. The penalty parameter should be
increased if the grid is refined.

3 Application of FETI to Contact Problems

Let us briefly outline the fundamental formulae of the FETI method. Con-
sider solid bodies in contact, discretized into a finite element mesh and in
addition decomposed into sub-domains. The numerical approximation to the
problem in terms of the finite element discretization and auxiliary domain
decomposition can be expressed as reads

min
1
2
u>Ku− f>u subject to BIu ≤ 0 and BEu = 0 (2)

where A stands for a positive semi-definite stiffness matrix, BI and BE denote
the full rank matrices which enforce the discretized inequality constraints
describing conditions of non-interpenetration of bodies and inter-subdomain
equality constraints, respectively, and f stands for the discrete analogue of
the linear form `(u).

Denoting

λ =
[

λI

λE

]
and B =

[
BI

BE

]
,

we can write the Lagrangian associated with problem (2) briefly as

L(u, λ) =
1
2
u>Ku− f>u + λ>Bu.
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It is well known that (2) is equivalent to the saddle point problem

Find (u, λ) s.t. L(u, λ) = sup
λI≥0

inf
u

L(u, λ). (3)

After eliminating the primal variables u from (3), we shall get the minimiza-
tion problem

min Θ(λ) s.t. λI ≥ 0 and R>(f −B>λ) = 0, (4)

where
Θ(λ) =

1
2
λ>BK†B>λ− λ>BK†f, (5)

K† denotes a generalized inverse that satisfies KK†K = K, and R denotes
the full rank matrix whose columns span the kernel of K.

Even though problem (4) is much more suitable for computations than (2),
further improvement may be achieved by adopting some simple observations
and the results of Farhat, Mandel, Roux and Tezaur [FMR94, MT96]. Let us
denote

F = BK†B>, G̃ = R>B>, ẽ = R>f, d̃ = BK†f,

and let λ̃ solve G̃λ̃ = ẽ, so that we can transform the problem (4) to mini-
mization on the subset of the vector space by looking for the solution in the
form λ = µ + λ̃. Since

1
2
λ>Fλ− λ>d̃ =

1
2
µ>Fµ− µ>(d̃− Fλ̃) +

1
2
λ̃>Fλ̃− λ̃>d̃,

problem (4) is, after returning to the old notation, equivalent to

min
1
2
λ>Fλ− λ>d s.t. Gλ = 0 and λI ≥ −λ̃I (6)

where d = d̃−Fλ̃ and G denotes a matrix arising from the orthonormalization
of the rows of G̃.

Our final step is based on observation that the problem (6) is equivalent
to

min
1
2
λ>PFPλ− λ>Pd s.t. Gλ = 0 and λI ≥ −λ̃I (7)

where
Q = G>G and P = I −Q

denote the orthogonal projectors on the image space of G> and on the kernel
of G, respectively. Enhancing the equality constraints in (7) by the penalty
into the function

Θρ(λ) =
1
2
λ>(PFP + ρQ)λ− λ>Pd, (8)

we can approximate the solution of (7) by the solution of
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min Θρ(λ) s.t. λI ≥ −λ̃I (9)

with a sufficiently large penalty parameter ρ. Note that image spaces of the
projectors P and Q are invariant subspaces of the Hessian Hρ = PFP + ρQ
of Θρ(λ).

4 Scalable algorithm based on optimal dual penalty

In this section we shall describe a scalable algorithm for (9). Basic ingredient
of the theoretical development is the estimate by Mandel and Tezaur [MT96]
who proved that under the assumption on regularity of the discretization and
boundedness of H/h, there is a lower bound α > 0 on the eigenvalues of PFP
restricted to the range of P that is independent of h and H, so that for any
vector λ

λ>PFPλ ≥ α‖Pλ‖2. (10)

Denoting α1 = min{α, ρ0}, it follows that for any δ, ρ0 > 0 and ρ ≥ ρ0

δ>Hρδ ≥ δ>Hρ0δ ≥ α1‖δ‖2. (11)

Another important ingredient is a recently proposed algorithm for bound
constrained quadratic programming called modified proportioning with re-
duced gradient projections (MPRGP) [DS05]. The MPRGP algorithm with
the choice of parameters Γ = 1 and α ∈ (0, ‖Hρ‖−1] generates the iterations
{λk} for the unique solution λ of (9) so that the rate of convergence in the
energy norm defined by ‖λ‖2Hρ = λ>Hρλ is given by

‖λk − λ‖2Hρ ≤ 2ηk

α1

(
Θρ(λ0)−Θρ(λ)

)
, η = 1− αα1

4
. (12)

Theorem 1. Let C, ρ and ε denote given positive numbers, and let {λi
H,h}

denote the iterations generated by MPRPG algorithm with the initial approx-
imation λ0 = 0 for the solution λH,h of the problem (9) arising from the
sufficiently regular discretization of the continous problem with the decompo-
sition, discretization and penalization parameters H, h and ρ. Then there is
an integer k independent of h and H such that H/h ≤ C implies

‖λk
H,h − λH,h‖ ≤ ε‖Pd‖. (13)

Proof. See [DH04b].

Theorem 1 shows that we can generate efficiently λ that is near to the
solution of (9). Its feasibility error is considered in the next theorem.
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Theorem 2. Let C1 and ρ denote given positive numbers. Then there is a
positive constant C such that if ε > 0 and λH,h,ρ denotes an approximate
solution of the problem (9) arising from the sufficiently regular discretiza-
tion of the continuous problem with the decomposition, discretization and
penalization parameters H, h and ρ, respectively, H/h ≤ C1, ρ ≥ ρ0 and
‖ν(λH,h,ρ)‖ ≤ ε‖Pd‖, then

‖GλH,h,ρ‖ ≤ C
1 + ε√

ρ
‖Pd‖. (14)

Moreover, there is a constant CH,h that depends on H, h such that for any ρ

‖GλH,h,ρ‖ ≤ CH,h
1 + ε

ρ
‖Pd‖. (15)

Proof. See [DH04b].

Theorem 2 shows that a prescribed bound on the relative feasibility error
(14) may be achieved with the penalty parameter ρ independent of the dis-
cretization parameter h. Thus we have shown that we can get an approximate
solution of the problem (7) with prescribed precision in a number of steps that
does not depend on the discretization parameter h. Let us recall that even
though the large penalty parameters may destroy conditioning of the Hessian
of the Lagrangian, they need not slow down the convergence of the conjugate
gradient based methods.

5 Contact problems with large displacements

While the FETI method is directly applicable to the solution to contact
problems of linearly elastic bodies with small displacements, any other non-
linearity necessitates application of additional method for solution of nonlinear
problems. The non-linearity we take into account, apart from the contact, is
the one caused by large displacements and finite rotations. To this end we
use the total Lagrangian formulation which includes all kinematic non-linear
effects. As a strain measure we make use of the Green–Lagrange tensor and as
a stress measure the second Piola–Kirchhoff tensor which is work–conjugate
with the previously mentioned strain tensor.

The Modified Newton-Raphson method was used as a tool for solution of
these nonlinear problems. Hence, the following algorithm was proposed:

Initial step:
Assembling of stiffness matrix K and matrix of
continuity conditions between subdomains BE

Step 1
Assembling of external nodal forces vector fext

Prescribing conditions of non-interpenetration of bodies
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in current configuration BI , cI.
Step 2

Evaluation of internal forces vector fint stemming from
stresses

Step 3
FETI solution of contact problem

min
1
2
uT Ku − uT f s.t. BIu ≤ cI and BEu = 0

where vector f is residual between external forces fext

and contact and internal forces fint.
Step 4

Test of convergence.
In negative case go to Step 1, otherwise stop.

As the suitable stopping criterion the relative change of nodal displace-
ments can be chosen.

6 Hertzian Problem of Contact of Two Cylinders

Consider a classic Hertzian problem, i.e. frictionless and elastic one, of two
cylinders with parallel axes in contact according to Figure 1. The radius of
the upper cylinder is R1 = 1000 mm and the radius of the lower cylinder
is infinite, which means that the lower body is a half-space. The material
properties of both bodies were as follows: Young’s modulus E = 2.0 × 1011

Pa and Poisson’s ratio ν = 0.3. The load Q = 400 MN/m is applied along
the axis of the upper cylinder. The problem is a two-dimensional one from
mathematical point of view, but it was modelled with tri-linear elements as
a three-dimensional problem by considering bodies of a finite length. The
boundary conditions were imposed in such a way that they generated a plane
strain problem. The complete mesh is shown in Figure 1 as well as its detail
along the surfaces potentially in contact.

The analytical solution by McEwen can be found in [J85]. The results
yielded by both the FETI method in terms of the dual penalty approach and
the analytical solution are shown in Figure 2b. It shows distribution of normal
contact stress along one half of the contact surface of the lower cylinder from
the plane of symmetry upwards. It is obvious that the difference between both
solutions is small. Let us notice that the various values of dual penalty was set
from 1e+0 to 1e+4 without significant change of the solution. For comparison
Figure 2a depicts solution of the same problem but in terms of the primal
penalty method. The problem is not semi-coercive but coercive in this case
because the primal penalty method cannot treat problems with sub-domains
undergoing the rigid body modes. The penalty method was applied with five



FETI method for contact problems with large displacements 7

different magnitudes of the penalty parameters. It can clearly be seen how the
quality of solution degrades progressively as the penalty parameter is reduced.

Fig. 1. Hertzian contact problem
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Fig. 2a. Normal contact stresses: Pri-
mal penalty method

Fig. 2b. Normal contact stresses:
Dual penalty (FETI) method

We solved the problem with a load (400 MN/m) and the displacements
cannot be regarded as small. Therefore we had to iterate in the outer loop, in
the sense of algorithm in section 5, because of the large displacements. The
total load was applied in two steps for better convergence.

Figure 3a depicts numbers of conjugate gradients of the inner problem
solver needed for convergence at each cycle of the outer loop. Figure 3b demon-
strates independency of the number of conjugate gradients for different choices
of the value of dual penalty.
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