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Summary. BDDC (Balancing Domain Decomposition by Constraints) meth-
ods, so far developed for two levels [3, 7, 8], are similar to the balancing
Neumann-Neumann algorithms. However, the BDDC coarse problem is given
in terms of a set of primal constraints and the matrix of the coarse problem is
generated and factored by direct solvers at the beginning of the computation.
The coarse component of the preconditioner can ultimately become a bottle-
neck if the number of subdomains is very large. In this paper, two three-level
BDDC methods are introduced for solving the coarse problem approximately
in two and three dimensions, while still maintaining a good convergence rate.
Estimates of the condition numbers are provided for the two three-level BDDC
methods and numerical experiments are also discussed.

1 The two-level BDDC method

We consider a second order scalar elliptic problem in a two or three dimen-
sional region Ω: find u ∈ H1

0 (Ω), such that

∫

Ω

ρ∇u · ∇v =

∫

Ω

fv ∀v ∈ H1
0 (Ω), (1)

where ρ(x) > 0 for all x ∈ Ω. We introduce a mesh, subdomains Ωi, and an
interface Γ on the domain Ω with notation as in [10, Section 4.2].

Let W(i) be the standard conforming first order finite elements on Ωi. We
assume that these functions vanish on ∂Ω. Each W(i) can be decomposed

into a subdomain interior part W
(i)
I and a subdomain interface part W

(i)
Γ .

The subdomain interface part W
(i)
Γ can be further decomposed into a pri-

mal subspace W
(i)
Π and a dual subspace W

(i)
∆ , i.e., W(i) = W

(i)
I

⊕
W

(i)
Γ =

W
(i)
I

⊕
W

(i)
Π

⊕
W

(i)
∆ .
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We denote the associated product spaces by W :=
∏N

i=1 W(i), WΓ :=∏N
i=1 W

(i)
Γ , W∆ :=

∏N
i=1 W

(i)
∆ , WΠ :=

∏N
i=1 W

(i)
Π , and WI :=

∏N
i=1 W

(i)
I .

Correspondingly, we have W = WI

⊕
WΓ and WΓ = WΠ

⊕
W∆.

We will consider elements of the product space W which are discontinuous
across the interface. However, the finite element approximation of the elliptic
problem is continuous across Γ and we denote the corresponding subspace of

W by Ŵ.

We further introduce an interface subspace W̃Γ ⊂ WΓ , for which cer-
tain primal constraints are enforced. Here, the continuous primal subspace,

denoted by ŴΠ , is only spanned by the continuous finite element basis func-
tions of the vertex nodes in two dimensions and by the continuous edge average
variables over each subdomain edge in three dimensions. For three dimensions,
we change the variables to make the edge average degrees of freedom explicit,
see [5, Sec 6.2] and [6, Sec 2.3]. From now on, we assume that all the matrices

are written in terms of the new variables in three dimensions. The space W̃Γ

can be decomposed into W̃Γ = ŴΠ

⊕
W∆.

We define an operator S̃Γ by: given uΓ = uΠ ⊕u∆ ∈ ŴΠ

⊕
W∆ = W̃Γ ,

we find S̃ΓuΓ by eliminating the interior variables of the partially assembled
system with continuous primal components.

The operator RΓ∆ : W̃Γ → W∆, restricts the functions in the space

W̃Γ to W∆, and is a block diagonal matrix diag(R
(1)
Γ∆, · · · , R

(N)
Γ∆ ), where each

R
(i)
Γ∆ represents the restriction from W

(i)
Γ to W

(i)
∆ . Furthermore, R

(i)
∆ : W∆ →

W
(i)
∆ , is the restriction matrix which extracts the subdomain part, in the space

W
(i)
∆ , of the functions in the space W∆, and RΓΠ restricts the functions in

the space W̃Γ to ŴΠ . R
(i)
Π is the restriction operator from the space ŴΠ to

W
(i)
Π .

RΓ = (R
(1)
Γ , · · · , R

(N)
Γ )T and RD,Γ = (R

(1)
D,Γ , · · · , R

(N)
D,Γ )T are the restric-

tion and scaled restriction operators from the space ŴΓ onto W̃Γ , respec-

tively. Here R
(i)
Γ maps a vector in ŴΓ to a vector in W

(i)
Γ . Each column of

R
(i)
Γ with a nonzero entry corresponds to an interface node, x ∈ ∂Ωi,h ∩ Γh,

shared by the subdomain Ωi and its neighboring subdomains. Multiplying

each such column of R
(i)
Γ with δ†i (x) gives us R

(i)
D,Γ , where δ†i (x) is defined in

[10, Formula (6.2)].

The reduced interface problem can be written as: find uΓ ∈ ŴΓ such that
RT

Γ S̃Γ RΓuΓ = gΓ , where gΓ is the load vector reduced to Γ .
The two-level BDDC preconditioned equation is of the form

M−1RT
Γ S̃Γ RΓ uΓ = M−1gΓ ,

where the preconditioner M−1 = RT
D,Γ S̃−1

Γ RD,Γ has the following form (see
[6, Formula (33)]) with the columns of Φ, being minimal energy extensions of
the primal variables:
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RT
Γ DΓ





N∑

i=1

R
(i)T

Γ∆

(
0 R

(i)T

∆

)(
A

(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

)−1(
0

R
(i)
∆

)
R

(i)
Γ∆ + ΦS−1

Π ΦT



DΓ RΓ .

Denote by ED and PD, the average and jump operators (see [10, Formula

(6.4) and (6.38)]), on the space W̃Γ , respectively. Central to obtaining the
condition number estimate for the preconditioned two-level BDDC operator
is a bound for the ED operator (see [8, Theorem 25]). Since ED +PD = I (see
[10, Lemma 6.10]), we only need to find a bound for the PD operator.

A bound for the PD operator in two dimensions is given in [9], provided
that the coefficient ρ(x) of (1) varies moderately in each subdomain. In our
theory, we also assume that each subdomain is a union of shape-regular coarse
triangles and that the number of such triangles forming an individual subdo-
main is uniformly bounded. Moreover, we assume that the triangulation of
each subdomain is quasi uniform. For the three dimensional case, we need
one more requirement for ρ(x) since we only use the edge average constraints,
namely that for all pairs of subdomain Ωi and Ωj , which have a vertex but not
an edge in common, there exists an acceptable edge path (see [10, Definition
6.26]) between the two subdomains. With this assumption, we have a good
estimate for the PD operator (see [10, Lemma 6.36]): under our assumptions,
we have in two and three dimensions:

uT
Γ MuΓ ≤ uT

Γ RT
Γ S̃Γ RΓuΓ ≤ C (1 + log(H/h))

2
uT

Γ MuΓ , ∀uΓ ∈ ŴΓ .

2 A three-level BDDC method

In the three-level case, we will not factor the coarse problem matrix SΠ by
a direct solver. Instead, we will solve the coarse problem approximately by
using an idea similar to the two-level preconditioner.

We decompose Ω into N subregions Ωj with diameters Ĥj , j = 1, · · · , N .
Each subregion Ωj has Nj subdomains Ωj

i with diameter Hj
i . Let Ĥ =

maxj Ĥj and H = maxi,j Hj
i , for j = 1, · · · , N , and i = 1, · · · , Nj . We

introduce the subregional Schur complements:

S
(j)
Π =

Nj∑

i=1

R
(i)T

Π



A

(i)
ΠΠ −

(
A

(i)
ΠI A

(i)
Π∆

)(
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

)−1(
A

(i)T

ΠI

A
(i)T

Π∆

)
R

(i)
Π ,

and note that the coarse problem matrix SΠ can be assembled from the S
(j)
Π .

Let Γ̂ be the interface between the subregions; Γ̂ ⊂ Γ . We denote the set
of interior primal variables in each subregion by ÎH , and the set of interface
primal variables on the boundary of the subregions by Γ̂H .

We denote the vector space corresponding to the primal variables of the

subregion Ωi by W
(i)
c . We define the subregion spaces Ŵ

c,Γ̂
, W̃

c,Γ̂
, R̂

(i)

Γ̂
,

R̂
(i)

D̂,Γ̂
, R̂

Γ̂
, and R̂

D̂,Γ̂
, as for the subdomains but on the subregion level.
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We introduce an operator T̃ :

R̂
T

Γ̂
T̃ R̂

Γ̂
=

N∑

i=1

R̂
(i)T

Γ̂
(S

(i)
Π

Γ̂ Γ̂

− S
(i)
Π

Γ̂ Î

S
(i)−1

Π
ÎÎ

S
(i)T

Π
Γ̂ Î

)R̂
(i)

Γ̂
. (2)

and define our three-level preconditioner M̃−1 by

RT
Γ DΓ





N∑

i=1

R
(i)T

Γ∆

(
0 R

(i)T

∆

)( A
(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

)−1(
0

R
(i)
∆

)
R

(i)
Γ∆ + ΦS̃−1

Π ΦT



DΓ RΓ .

Here S̃−1
Π is an approximation of S−1

Π and is defined as follows: given any

right hand side Ψ, let y = S−1
Π Ψ and ỹ = S̃−1

Π Ψ. We first reduce the original
coarse problem SΠ to the subregion interface problem. We do not solve the
interface problem exactly but replace y

Γ̂
, the interface part of y, by

ỹ
Γ̂

= R̂T

D̂,Γ̂
T̃−1R̂

D̂,Γ̂
h

Γ̂
,

where h
Γ̂

is the load vector reduced to Γ̂ .

3 Condition number estimate for the new preconditioner

We first collect a number of results which are needed in our theory. We discuss,
in detail, only the two dimensional case.

Lemma 1. (Two dimensions) Let V H
i be the standard continuous piecewise

linear finite element function space for a subregion Ωi with a quasi-uniform
coarse mesh with mesh size H. And let V h

i,j , j = 1, · · · , Ni be the space for

a subdomain Ωi
j with a quasi-uniform fine mesh with mesh size h. Moreover,

each subdomain is a union of coarse triangles with vertices on the boundary
of the subdomain. Given u ∈ V H

i , let û ∈ V H
i interpolate u at each coarse

node and be the discrete V h
i,j-harmonic extension in each subdomain Ωi

j con-

strained only at the vertices of Ωi
j, j = 1, · · · , Ni. Then, there exist two positive

constants C1 and C2, which are independent of Ĥ, H, and h, such that

C1(1+log
H

h
)




Ni∑

j=1

|û|2
H1(Ωi

j
)


 ≤ |u|2H1(Ωi) ≤ C2(1+log

H

h
)




Ni∑

j=1

|û|2
H1(Ωi

j
)


 .

We use [2, Lemma 4.2] to prove Lemma 1. Since we assume that the
fine triangulation of each subdomain is quasi uniform, we can then obtain
uniform constants C1 and C2 in Lemma 1 which work for all the subregions.
In addition, a similar result for three dimensions can be obtained with [1,
Lemma 4.2].
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We define the subregion interface averages operator Ê
D̂

: W̃
c,Γ̂

→ Ŵ
c,Γ̂

,

by Ê
D̂

= R̂
Γ̂
R̂T

D̂,Γ̂
, which computes averages across the subregion interface Γ̂

and then distributes the averages to the boundary points of the subregions.
The interface average operator Ê

D̂
has the following properties:

Lemma 2.

Ê
D̂
w

Γ̂
= R̂T

Γ̂
R̂

D̂,Γ̂
w

Γ̂
= w

Γ̂
, for any w

Γ̂
∈ Ŵ

c,Γ̂
.

Lemma 3.

|Ê
D̂
w

Γ̂
|2
T̃
≤ C

(
1 + log

Ĥ

H

)2

|w
Γ̂
|2
T̃
,

for any w
Γ̂
∈ W̃

c,Γ̂
, where C is a positive constant independent of Ĥ, H, and

h. Here T̃ is defined in (2).

See [11] for a proof in two dimensions and [12] for a proof in three dimen-
sions. As we mentioned before, we use constraints on the averages over edges in
three dimensions. These constraints lead to a considerably more complicated
coarse problem which needs new technical tools in the proof of Lemma 3. This
is the main difference in the analysis between two and three dimensions.

Lemma 4. Given any uΓ ∈ ŴΓ , let Ψ = ΦT DΓ RΓuΓ . We have,

ΨT S−1
Π Ψ ≤ ΨT S̃−1

Π ΨT ≤ C

(
1 + log

Ĥ

H

)2

ΨT S−1
Π Ψ.

Lemma 5. Given any uΓ ∈ ŴΓ ,

uT
Γ M−1uΓ ≤ uT

Γ M̃−1uΓ ≤ C

(
1 + log

Ĥ

H

)2

uT
Γ M−1uΓ .

We finally have

Theorem 1. The condition number for the system with the three-level pre-

conditioner M̃−1is bounded by C(1 + log Ĥ
H

)2(1 + log H
h

)2.

4 Using Chebyshev iterations

Another approach to the three-level BDDC methods is to use a preconditioned
Chebyshev method with a fixed number of iterations to solve the reduced
coarse level subregion interface problem. The preconditioner is R̂T

D̂,Γ̂
T̃−1R̂

D̂,Γ̂
.

Denoting the corresponding new coarse problem matrix by ŜΠ , the new pre-
conditioner M̂−1 is defined by:
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RT
Γ DΓ





N∑

i=1

RT
Γ∆

(
0 R

(i)T

∆

)(
A

(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

)−1(
0

R
(i)
∆

)
RΓ∆ + ΦŜ−1

Π ΦT



DΓ RΓ .

Denoting by λj the eigenvalues of
(
R̂T

D̂,Γ̂
T̃−1R̂

D̂,Γ̂

)(
R̂T

Γ̂
T̃ R̂

Γ̂

)
, we need

two input parameters l and u for the Chebyshev iterations, where l and u are
estimates for the minimum and maximum values of λj , respectively, see [4].
From our analysis above, we know that minj λj = 1 and maxj λj ≤ C(1 +

log Ĥ
H

)2(1 + log H
h

)2. We can use the conjugate gradient method to obtain an
estimate for the largest eigenvalue at the beginning of the computation to
choose a proper u.

Let α = 2
l+u

, µ = u+l
u−l

and Q = I−α
(
R̂T

D̂,Γ̂
T̃−1R̂

D̂,Γ̂

)(
R̂T

Γ̂
T̃ R̂

Γ̂

)
. Denote

by σj the eigenvalues of Q.

If we choose u such that λj < l+u, we find that 1−
cosh(k cosh−1(µσj))
cosh(k cosh−1(µ))

> 0,

and we then have the following lemmas.

Lemma 6. Given any uΓ ∈ ŴΓ , let Ψ = ΦT DΓ RΓ uΓ and select u such that
λj < u + l. There then exist two functions C1(k) and C2(k) that

C1(k)ΨT S−1
Π Ψ ≤ ΨT Ŝ−1

Π ΨT ≤ C2(k)ΨT S−1
Π Ψ,

where C1(k) and C2(k) are the minimum and maximum values, over all j, of(
1 −

cosh(k cosh−1(µσj))

cosh(k cosh−1(µ))

)
.

Lemma 7. Given any uΓ ∈ ŴΓ ,

C1(k)uT
Γ M−1uΓ ≤ uT

Γ M̂−1uΓ ≤ C2(k)uT
Γ M−1uΓ ,

where C1(k) and C2(k) are defined in Lemma 6.

We finally have

Theorem 2. The condition number of the preconditioned operator using the

three-level preconditioner M̂−1is bounded by C C2(k)
C1(k) (1+ log H

h
)2, where C1(k)

and C2(k) are defined in Lemma 6 and C2(k)
C1(k) → 1 as k → ∞.

5 Numerical experiments

We have applied our two three-level BDDC algorithms to the model problem
(1). Here we only give results for two dimensions. We decompose the unit

square into N̂ × N̂ subregions and each subregion into N × N subdomains
with the side-length Ĥ = 1/N̂ and H = Ĥ/N , respectively. Equation (1) is
discretized, in each subdomain, by conforming piecewise linear elements with
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Table 1. Eigenvalue bounds and iteration counts with the preconditioner M̃
−1

Ĥ

H
= 4 H

h
= 4 H

h
= 4 4× 4 subregions Ĥ

H
= 4 4× 4 subregions

Subreg. Iter. Cond. # Ĥ

H
Iter. Cond. # H

h
Iter. Cond. #

4× 4 11 1.8096 4 11 1.8096 4 11 1.8096
8× 8 11 1.8145 8 12 1.8536 8 14 2.4934
12× 12 12 1.8159 12 12 1.8742 12 16 2.9758
16× 16 12 1.8162 16 12 1.8912 16 17 3.3473
20× 20 12 1.8164 20 12 1.9062 20 18 3.6546

Table 2. Eigenvalue bounds and iteration counts with the preconditioner M̂
−1,

4× 4 subregions, Ĥ

H
= 16 and H

h
= 4

u = 3.2 u = 6
k Iter. C1(k) λmin λmax Cond. # k Iter. C1(k) λmin λmax Cond. #

1 20 0.4762 0.4829 2.7110 5.6141 1 24 0.2857 0.2899 1.8287 6.3086
2 13 0.8410 0.8540 1.8820 2.2038 2 16 0.6575 0.6670 2.3435 3.5134
3 11 0.9548 0.9981 1.9061 1.9098 3 12 0.8524 0.9286 1.9628 3.1136
4 11 0.9872 1.0019 1.8663 1.8629 4 12 0.9377 0.9795 1.9850 2.0266
5 11 0.9964 1.0006 1.8551 1.8541 5 12 0.9738 0.9983 1.9403 1.9437

a finite element diameter h. The preconditioned conjugate gradient iteration
is stopped when the norm of the residual has been reduced by a factor of
10−8.

We have carried out two different sets of experiments. All the experimental
results are fully consistent with our theory. In the first set of experiments, we
use the first preconditioner M̃−1 and take the coefficient ρ = 1 in half of
the subregions and ρ = 101 in the neighboring subregions in a checkerboard
pattern. Table 1 gives the iteration counts and condition number estimates
with a change of the number of subregions, the number of subdomains, and
the size of the subdomain problems.

In the second set of experiments, we use the second preconditioner M̂−1

and take the coefficient ρ ≡ 1. We use the PCG to estimate the largest

eigenvalue of
(
R̂T

D̂,Γ̂
T̃−1R̂

D̂,Γ̂

)(
R̂T

Γ̂
T̃ R̂

Γ̂

)
which is approximately 3.2867. For

64×64 subdomains and H
h

= 4 , we have a condition number estimate of 1.8380
for the two-level BDDC. We then select different values of u, the upper bound
estimate of the eigenvalues for the preconditioned system, and k to see how the
condition number changes. We also evaluate C1(k) for k = 1, 2, 3, 4, 5. From
Table 2, we find that the smallest eigenvalue is bounded from below by C1(k)
and that the condition number estimate approaches 1.8380, the value in the
two-level case, as k increases. From these results, we see that if we can obtain

precise estimate for the largest eigenvalue of
(
R̂T

D̂,Γ̂
T̃−1R̂

D̂,Γ̂

)(
R̂T

Γ̂
T̃ R̂

Γ̂

)
, we
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need fewer Chebyshev iterations to obtain a condition number, similar to that
of the two-level case. However, the iteration count is not very sensitive to the
choice of u.
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