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Summary. We study optimized Schwarz methods for the stationary advection-
diffusion equation in two dimensions. We look at simple Robin transmission con-
ditions, with one free parameter. In the nonoverlapping case, we solve exactly the
associated min-max problem to get a direct formula for the optimized parameter.
In the overlapping situation, we solve only an approximate min-max problem. The
asymptotic performance of the resulting methods, for small mesh sizes, is derived.
Numerical experiments illustrate the improved convergence compared to other Robin
conditions.

1 Introduction

The classical Schwarz method, first devised as a tool to prove existence and unique-
ness results, converges only when there is overlap between subdomains, and con-
verges very slowly for small overlap sizes. It was first proposed by Lions [Lio90]
to change the Dirichlet transmission conditions in the algorithm to other types of
conditions, in order to obtain a convergent nonoverlapping variant. More recently,
optimized Schwarz methods were introduced by Japhet [Jap98]; using a Fourier
analysis on a model problem, the convergence factor is uniformly minimized over
a class of transmission conditions. The work of Japhet was originally carried on
the advection-diffusion equation in the plane, without overlap, and using second
order transmission conditions. Optimized Schwarz methods are now well-studied for
symmetric partial differential equations, for example for the Laplace and modified
Helmholtz equations (see [GHN01, Gan03] and references therein) and the Helmholtz
equation (see [Gan01, GMN02]).

The purpose of this work is to study optimized Robin transmission conditions for
the advection-diffusion equation, both in the case of nonoverlapping and overlapping
domain decompositions. We start, in Section 2, by introducing the model problem in
the plane. In Section 3, we present a general Schwarz iteration and its convergence
factor, from which optimal transmission conditions can be found. We also briefly
describe the Taylor polynomial approximations of the optimal symbols, a way to
obtain local transmission operators. In Section 4 and 5, we present optimized Robin
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conditions, in the nonoverlapping and overlapping cases respectively. We illustrate
our results in Section 6 with numerical experiments.

2 The Model Problem

The derivation and analysis of optimized Schwarz methods is done on a model prob-
lem. Here we consider the advection-diffusion equation on the plane with constant
coefficients

{

Lu := −ν∆u + a · ∇u + cu = f in R
2,

u is bounded at infinity,

where ν, c > 0 and a = (a, b). For the convergence analysis of the algorithms pre-
sented subsequently, it will be sufficient to look at the homogeneous problem only,
f ≡ 0, by linearity. We decompose the plane into two subdomains Ω1 and Ω2 with
an overlap of width L

Ω1 :=

(

−∞,
L

2

)

× R, Ω2 :=

(

−L

2
,∞

)

× R,

and we denote by un
i the approximate solution in subdomain Ωi, at iteration n.

Our analysis is based on the Fourier transform in the y variable

Fy[u(x, y)] = û(x, k) :=
1√
2π

∫ ∞

−∞

u(x, y)e−iykdy.

In Fourier space, the homogeneous advection-diffusion equation becomes

−ν
∂2û

∂x2
+ a

∂û

∂x
+ (νk2 − ibk + c)û = 0.

This is a linear second order ODE in x that can be solved analytically. The roots to
the corresponding characteristic equation are given by

λ±(k) =
a ±

√
a2 + 4νc − 4iνbk + 4ν2k2

2ν
, (1)

where Re(λ+) > 0 and Re(λ−) < 0. The two fundamental solutions are then

eλ+(k)x, eλ−(k)x.

We introduce the convenient notation

z(k) :=
√

a2 + 4νc − 4iνbk + 4ν2k2, (2)

ξ(k) := Re(z(k)), η(k) := Im(z(k)).
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3 Optimal Conditions and Taylor Approximations

We first consider a general Schwarz iteration of the form

{

Lun+1
1 = 0 in (−∞, L

2
) × R,

∂un+1
1
∂x

− S1(u
n+1
1 ) =

∂un
2

∂x
− S1(u

n
2 ) at x = L

2
,

(3)

{

Lun+1
2 = 0 in (−L

2
,∞) × R,

∂un+1
2
∂x

− S2(u
n+1
2 ) =

∂un
1

∂x
− S2(u

n
1 ) at x = −L

2
.

(4)

where Si are linear operators acting in the y variable only, with Fourier symbols σi

Fy[Si(u)] = σi(k)û(x, k).

Using the Fourier transform in y, we can solve each subproblem analytically, and
find a convergence factor.

Proposition 1. The convergence factor of the Schwarz iteration (3)-(4) in Fourier
space is

ρ(k, L, σ1, σ2) :=

∣

∣

∣

∣

∣

ûn+1
1 (L

2
, k)

ûn−1
1 (L

2
, k)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(λ− − σ1)(λ
+ − σ2)

(λ+ − σ1)(λ− − σ2)
e−L(λ+−λ−)

∣

∣

∣

∣

, (5)

where λ±(k) are defined by (1).

By choosing σ1(k) = λ−(k) and σ2(k) = λ+(k), we can make the convergence factor
become 0, and hence obtain an optimal convergence in 2 iterations only. This gives
optimal operators Sopt

i when transforming back to real space, which turn out to
be Dirichlet-to-Neumann maps, see for example [NR95]. However these operators
are nonlocal in y (their Fourier symbols λ± are not polynomials in k) and thus not
convenient for practical implementation.

One way to find local conditions is to take, for σi, low order Taylor approxima-
tions of the optimal symbols λ±. For example, zeroth order approximations give

σ1 =
a −

√
a2 + 4νc

2ν
, σ2 =

a +
√

a2 + 4νc

2ν
, (6)

which lead to a particular choice of Robin conditions. These methods work well only
on small frequency components in y (the Taylor approximations are good only for
small k). An analysis of these methods can be found in [Jap97, Dub03].

4 Optimized Robin Conditions Without Overlap

We consider now a class of Robin transmission conditions by choosing

S1(u) =
a − p

2ν
u, S2(u) =

a + p

2ν
u,

where p is a real number. Using the general formula (5), the convergence factor for
this choice reduces to
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ρR1(k, L, p) :=

∣

∣

∣

∣

(p − z(k))2

(p + z(k))2
e−

Lz(k)
ν

∣

∣

∣

∣

, (7)

where z(k) is defined by (2). The idea of optimized Schwarz methods is, after fixing a
class of conditions (Robin in this case), to minimize the convergence factor uniformly
for all frequency components in a relevant range. This is formulated as a min-max
problem. In our situation, a good value for the parameter p is the one solving the
optimization problem

min
p∈R

(

max
kmin≤k≤kmax

|ρR1(k, L, p)|
)

. (8)

In the following results, we use the short-hand notation ξmin := ξ(kmin),
ξmax := ξ(kmax) and similar notations for zmin and zmax.

Proposition 2 (Optimized Robin parameter, without overlap). If there is
no overlap (L = 0), the unique minimizer p∗ of problem (8) is given by

p∗ =







|zmin| if pc < |zmin|,
pc if |zmin| ≤ pc ≤ |zmax|,
|zmax| if pc > |zmax|,

where pc :=

√

ξmin|zmax|2 − ξmax|zmin|2
ξmax − ξmin

.

For symmetric equations, the optimized Robin parameter is given by an equioscilla-
tion property, namely ρR1(kmin, 0, p∗) = ρR1(kmax, 0, p∗), see [Gan03]. On the other
hand, for the advection-diffusion equation, this characterization does not always
hold. Indeed, Proposition 2 shows that this equioscillation happens only when we
fall in the middle case, i.e. when p∗ = pc.

Proposition 3 (Optimized Robin asymptotics, without overlap). For L = 0
and kmax = π

h
, the asymptotic performance for small h of the Schwarz method with

optimized Robin transmission conditions is

max
kmin≤k≤ π

h

|ρR1(k, 0, p∗)| = 1 − 2

√

2ξmin

πν
h

1
2 + O(h).

Note that the optimized Robin method has better asymptotic performance compared
to the zeroth order Taylor approximation (6), which yields an expansion of the form
1 − O(h) for small h. The proof of Proposition 2 and 3 can be found in [Dub03].

Remark 1. We can also choose two different constants in the Robin conditions

S1(u) =
a − p

2ν
u, S2(u) =

a + q

2ν
u,

and look for a good pair of parameters (p, q) by solving the min-max problem

min
p,q∈R

(

max
kmin≤k≤kmax

∣

∣

∣

∣

(p − z)(q − z)

(p + z)(q + z)
e−

Lz
ν

∣

∣

∣

∣

)

.

This will be referred to as the optimized two-sided Robin conditions. In this
paper, when using these conditions, the parameters are computed by solving the
min-max problem numerically; there are no complete analytical results yet.
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Fig. 1 shows, on the left, a comparison of the convergence factors for different
nonoverlapping Schwarz methods using Robin conditions.

5 Optimized Robin Conditions With Overlap

We now consider the overlapping situation. The convergence factor (7) can be writ-
ten as

|ρR1(k, L, p)| =
(p − ξ)2 + η2

(p + ξ)2 + η2
e−

Lξ
ν .

Instead of finding the exact solution to the min-max problem, we derive in this
section an approximate parameter that works well asymptotically for small h. We
observe that η remains bounded: |η(k)| ≤ |b|, ∀k. Hence we have the upperbound

|ρR1(k, L, p)| ≤ (p − ξ)2 + b2

(p + ξ)2 + b2
e−

Lξ
ν =: Q(ξ, p).

Instead of minimizing ρ, for simplicity we solve an approximate min-max problem
using the upper bound

min
p∈R

(

max
ξmin≤ξ≤ξmax

Q(ξ, p)

)

. (9)

We take kmax = ∞ in this case to avoid extra complications. We expect that the
parameter we obtain from this optimization will be close to the optimized parameter
from (8), when |b| and L are small.

Proposition 4 (Approximate Robin parameter, with overlap). Let L > 0
and kmax = ∞. Define the critical value

ξ2(p) :=

√

2νp − Lb2 + Lp2 + 2
√

ν2p2 − 2νLpb2 − L2b2p2

L
,

and let pmin :=
√

ξ2
min + b2. If ξ2(pmin) is complex, or if ξ2(pmin) < ξmin, or if

Q(ξmin, pmin) > Q(ξ2(pmin), pmin),

then the unique minimizer p∗ of problem (9) is p∗ = pmin. Otherwise, the unique
minimizer is given by the unique root p∗ (larger than pmin) of the equation

Q(ξmin, p∗) = Q(ξ2(p
∗), p∗).

Proposition 5 (Approximate Robin asymptotics with overlap). For L = h
and kmax = π

h
, the asymptotic performance of the optimized Schwarz method, with

the Robin parameter p∗ obtained through Proposition 4, is given by

max
ξmin≤ξ≤ξmax

|ρR1(k, h, p∗)| = 1 − 4

(

ξmin

ν

) 1
3

h
1
3 + O(h

2
3 ). (10)
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The proof of these results can also be found in [Dub03]. In the special case when
b = 0 (advection is normal to the interface), no approximation is made and our
results above give the optimized Robin parameter. The asymptotic performance of
the exact optimized Robin conditions (from solving (8)) is expected to be the same
as (10) up to order h1/3, with the same constant.

Fig. 1 shows on the right the convergence factors obtained for four different
Robin transmission conditions, when overlap is used.
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Fig. 1. Convergence factors for the values ν = 0.1, a = 1, b = 1, c = 1,
[kmin, kmax] = [10, 400]. The case without overlap is shown on the left, and with
overlap L = π/400 on the right.

6 Numerical Experiments

We consider here an example with a vary-
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Fig. 2. The advection field.

ing advection a(x, y) obtained from a Navier-
Stokes computation, see Fig. 2. The domain is
the square Ω = (0, π)2, the viscosity is taken
to be ν = 0.1, and c = 1. The source term is
given by f(x, y) = sin (5x) sin (5y). The results
were obtained using a finite difference solver, for
rectangular domains. The original region is di-
vided into two symmetric subdomains, with ver-
tical interfaces. For the initial data to start the
Schwarz iteration, we use vectors of random val-
ues, to make sure the initial error contains a wide
range of frequency components.

The optimized Schwarz methods are constructed using model problems with con-
stant coefficients. When the coefficients are varying (continuously) in the domain,
we need to find optimized conditions at each mesh point on the interfaces separately.
In our setting the optimized Robin parameters will depend on y, i.e. p∗ = p∗(y).
Note that the computation of the optimized conditions is done only once, before
starting the Schwarz iteration.
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Fig. 3 shows the convergence of the different Schwarz methods, using both nonover-
lapping and overlapping decompositions. Note that the effect of using an overlap is
significant on the convergence: even by using a small overlap of only two grid spaces
wide, the number of iterations required to reach tolerance is cut down by a factor
of more than 2.
We also looked at the effect of h on the convergence rate of the Schwarz iteration.
Fig. 4 shows logarithmic plots of the number of iterations needed to achieve an error
of 10−6, for different values of the mesh size h. The numerical results agree well with
the theoritical asymptotic performances: for those we have derived, but also those
we expect for two-sided Robin conditions.
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Fig. 3. Comparison of different transmission conditions for a varying advection,
ν = 0.1, c = 1, h = π/300. The case without overlap is shown on the left, and the
case with overlap (L = 2h) on the right.
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of h, without overlap on the left and with overlap L = 2h on the right.
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7 Conclusion

We have computed optimized Robin transmission conditions in the Schwarz iteration
for the advection-diffusion equation, by solving analytically the min-max problem.
When the subdomains are not overlapping, the optimized parameter is given by an
explicit formula. In the overlapping case, we have solved an approximate min-max
problem only: computing the optimized parameter reduces to solving a nonlinear
equation (in the worst case). The approximation we have made is good when the
advection is not too strongly tangential to the interfaces, and for small mesh sizes
h. The asymptotic performance of these optimized methods exhibits a weaker de-
pendence on the mesh size than previously known Robin conditions.
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