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PETSc objects
l Vector and matrix objects, Vec and Mat

n Accessed and used as mathematical objects 
n Code usage independent of runtime choice of data structures
n Implemented to allow for high performance

u Split-phase operations
u Overlap of communication and computation
u Aggregation, locality, low memory footprint

l Cartesian grid object DA
l Solver objects SLES and SNES

n Large collection of progressive algorithmic options assembled 
under abstract interfaces

n Recursively callable, with separate contexts for sub-objects
n Command-line tunable 

l Auxilliary objects (e.g., Viewer)
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Basic and advanced algorithms
l Linear solvers

n Schwarz: single-level, two-level
n Schur: reduced, full (interface-interior, primal-dual)
n Schwarz-Schur hybrids

l Nonlinear solvers
n Newton-Krylov-Schwarz (NKS)
n Jacobian-free Newton-Krylov (JFNK)

l Implicit time integrators
n Time-accurate time stepping (PETSc’s TS)
n Pseudo-transient continuation (? tc)
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Scalability properties of DD
l Parallel scaling (time per iteration)

n Good “surface-to-volume” ratio: communication subdominant 
to computation, Amdahl’s law defeated

n Reasonable communication requirements: mostly nearest 
neighbor, of small size when global

n Can increase processors without bound with increased system 
size, at power-law rate that depends upon richness of 
communication network

l Convergence scaling (iterations needed for solution)
n Schwarz and Schur can have bounded condition number

n Newton can have quadratic convergence
n Nonlinear robustification techniques
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So far…
l Good stories mentioned …

n 1999 Gordon Bell Prize for aerodynamic computation 
using NKS (PETSc, Argonne)

n 2002 Gordon Bell Prize for structural dynamics 
computation using FETI-DP (Salinas, Sandia)

n Combustion model for ? tc

l But only simple examples presented in detail …
n Poisson problem

n Bratu problem

n Driven cavity



DD15 Tutorial, Berlin, 17-18 July 2003

This morning …
l Brief review

l More advanced algorithms

l Programmatic context of current PETSc 
development environment
n Mathematicians and computer scientists, come join 

the fun☺

l Broader sense of PDE-type scientific 
applications being addressed through PETSc
n Applications scientists, come join the fun☺
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Two distinct definitions of scalability
l “Strong scaling”

n execution time decreases in 
inverse proportion to the 
number of processors

n fixed size problem overall

l “Weak scaling”
n execution time remains constant, 

as problem size and processor 
number are increased in 
proportion

n fixed size problem per processor

n also known as “Gustafson 
scaling”
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Three important usages of “efficiency”
l For any iterative method, 

l “Convergence efficiency”

l “Implementation efficiency”

l Overall efficiency

l “Ideal” is unity for all three measures
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PDE varieties
l Evolution (time hyperbolic, time parabolic)

l Equilibrium (elliptic, spatially hyperbolic or 
parabolic)

l Mixed, varying by region

l Mixed, of multiple type                                
(e.g., parabolic with elliptic constraint)
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Common features
l Despite enormous variety of mathematical analysis 

required, most computational algorithms for PDEs can be 
described with surprisingly few common bulk-
synchronous (SPMD) kernels
n Domain-decomposed loops over mesh points manipulating purely 

local data

n Domain-decomposed loops over mesh points (or edges) 
manipulating own and near neighbors’ data

n Global reductions and recurrences

l The large variety of operations, yet simplicity of 
operation class, invites abstraction and performance 
optimization: in short, an object oriented library
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Questions?

l Now is a great time for them!

l Next, we go on to nonlinear Schwarz and advanced 
concepts in nonlinear solver software, to finish Lecture 
#2 from Thursday afternoon

l Then we start Lecture #3 on applications this morning

l This afternoon’s Lecture #4 is on two research topics: 
physics-based preconditioning and PDE-constrained 
optimization

l Whatever we don’t finish will be posted on line by this 
evening
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Nonlinear Schwarz preconditioning
l Nonlinear Schwarz has Newton both inside and 

outside and is fundamentally Jacobian-free
l It replaces                with a new nonlinear system 

possessing the same root, 
l Define a correction            to the     partition (e.g., 

subdomain) of the solution vector by solving the 
following local nonlinear system:

where                  is nonzero only in the 
components of the     partition

l Then sum the corrections:                            to get 
an implicit function of u
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Nonlinear Schwarz – picture
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Nonlinear Schwarz – picture
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Nonlinear Schwarz – picture
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Nonlinear Schwarz, cont.
l It is simple to prove that if the Jacobian of  F(u) is 

nonsingular in a neighborhood of the desired root 
then                   and                have the same unique 
root

l To lead to a Jacobian-free Newton-Krylov algorithm 
we need to be able to evaluate for any                :
n The residual 
n The Jacobian-vector product

l Remarkably, (Cai-Keyes, 2000) it can be shown that 

where                   and 
l All required actions are available in terms of            !
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Nonlinear Schwarz, cont.

Discussion:
l After the linear version of additive Schwarz was 

invented, it was realized that it is in the same class of 
methods as additive multigrid, in terms of operator 
algebra: projection off the error in a set of 
subspaces (though linear MG is usually done 
multiplicatively)

l After nonlinear Schwarz was invented, it was 
realized that it is in the same class of methods as 
nonlinear multigrid (full approximation scheme 
MG), in terms of operator algebra (though 
nonlinear multigrid is usually done multiplicatively)
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Driven cavity in velocity-vorticity coords
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Experimental example of nonlinear Schwarz

Newton’s method Additive Schwarz Preconditioned Inexact Newton
(ASPIN)

Difficulty at 
critical Re

Stagnation 
beyond 

critical Re

Convergence 
for all Re
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Common software infrastructure for 
nonlinear PDE solvers – coming in PETSc

l The user codes to the problem they 
are solving (by providing F(u)), 
not the algorithm used to solve the 
problem

l Implementation of various 
algorithms reuse common concepts 
and code when possible, without
losing efficiency 
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Encompassing …
l Newton’s method

n Jacobian-free methods 
n w/Jacobian-based preconditioned linear solvers 

(Newton-PCG)
n w/multigrid linear solvers (Newton-MG)

l Nonlinear multigrid
n a.k.a. Full approximation scheme (FAS) 
n a.k.a. MG-Newton
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Software engineering ingredients

l Standard solver interfaces (SLES, SNES)

l Solver libraries

l Automatic differentiation (AD) tools

l Code generation tools
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Algorithm review

F(u) = 0, Jacobian A(u)

Newton  

Newton–SOR (1 inner linear sweep over i)

SOR–Newton (1 inner nonlinear sweep over i)
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Cute observation
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… with approximations

… gives Newton-SOR

⇒ (Gauss-Seidel) matrix-free linear relaxation 

is very similar to nonlinear relaxation
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Function and Jacobian evaluation

l FAS requires them pointwise

l Newton requires them globally

l Newton-MG requires both
n Newton (outside) globally

n MG (inside) locally
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Enter Automatic Differentiation

l Given code for              AD can compute

n A(u) and

n A(u)*w efficiently
l Given code for              AD can compute

n and

n efficiently
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Automated Code generation (“in-lining”)

• Newton method requires a user-provided function and 
an AD Jacobian 

• Big performance hit if handled directly with 
components
§ A outer loop over an inner subroutine that calls a function at 

each point is inefficient globally

§ An outer subroutine that loops over all inner points is 
wasteful locally (information thrown away)

• Need to have it both ways, depending upon 
algorithmic context; user should not see this level of 
performance-induced coding complexity
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Coarse grid correction can also be handled

Coarse grid objects generated together with fine

(e.g., PETSc’s DMMG)

l Newton-MG

l MG-Newton
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Conclusion

The algorithmic/mathematical building blocks for 
Newton-MG and MG-Newton are essentially the 
same.

Thus the software building blocks should be also 
(and they will be in the next release of PETSc, 
version 3.0).


