
Review/Preface to Second
Day of DD-15 Tutorial

William D. Gropp

Lab for Advanced Numerical Software
Argonne National Laboratory

David E. Keyes

Department of Applied Physics & Applied Mathematics
Columbia University

DD15 Tutorial, Berlin, 17-18 July 2003

PETSc codeUser
code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

PETSc’s SLES & SNES: objects and algorithms

DD15 Tutorial, Berlin, 17-18 July 2003

PETSc objects
l Vector and matrix objects, Vec and Mat

n Accessed and used as mathematical objects
n Code usage independent of runtime choice of data structures
n Implemented to allow for high performance

u Split-phase operations
u Overlap of communication and computation
u Aggregation, locality, low memory footprint

l Cartesian grid object DA
l Solver objects SLES and SNES

n Large collection of progressive algorithmic options assembled
under abstract interfaces

n Recursively callable, with separate contexts for sub-objects
n Command-line tunable

l Auxilliary objects (e.g., Viewer)

DD15 Tutorial, Berlin, 17-18 July 2003

Basic and advanced algorithms
l Linear solvers

n Schwarz: single-level, two-level
n Schur: reduced, full (interface-interior, primal-dual)
n Schwarz-Schur hybrids

l Nonlinear solvers
n Newton-Krylov-Schwarz (NKS)
n Jacobian-free Newton-Krylov (JFNK)

l Implicit time integrators
n Time-accurate time stepping (PETSc’s TS)
n Pseudo-transient continuation (? tc)

DD15 Tutorial, Berlin, 17-18 July 2003

Scalability properties of DD
l Parallel scaling (time per iteration)

n Good “surface-to-volume” ratio: communication subdominant
to computation, Amdahl’s law defeated

n Reasonable communication requirements: mostly nearest
neighbor, of small size when global

n Can increase processors without bound with increased system
size, at power-law rate that depends upon richness of
communication network

l Convergence scaling (iterations needed for solution)
n Schwarz and Schur can have bounded condition number

n Newton can have quadratic convergence
n Nonlinear robustification techniques

DD15 Tutorial, Berlin, 17-18 July 2003

So far…
l Good stories mentioned …

n 1999 Gordon Bell Prize for aerodynamic computation
using NKS (PETSc, Argonne)

n 2002 Gordon Bell Prize for structural dynamics
computation using FETI-DP (Salinas, Sandia)

n Combustion model for ? tc

l But only simple examples presented in detail …
n Poisson problem

n Bratu problem

n Driven cavity

DD15 Tutorial, Berlin, 17-18 July 2003

This morning …
l Brief review

l More advanced algorithms

l Programmatic context of current PETSc
development environment
n Mathematicians and computer scientists, come join

the fun☺

l Broader sense of PDE-type scientific
applications being addressed through PETSc
n Applications scientists, come join the fun☺

DD15 Tutorial, Berlin, 17-18 July 2003

Two distinct definitions of scalability
l “Strong scaling”

n execution time decreases in
inverse proportion to the
number of processors

n fixed size problem overall

l “Weak scaling”
n execution time remains constant,

as problem size and processor
number are increased in
proportion

n fixed size problem per processor

n also known as “Gustafson
scaling”

T

p

good

poor

poor

N ∝ p

log T

log p
good

N constant

Slope
= -1

Slope
= 0

DD15 Tutorial, Berlin, 17-18 July 2003

Three important usages of “efficiency”
l For any iterative method,

l “Convergence efficiency”

l “Implementation efficiency”

l Overall efficiency

l “Ideal” is unity for all three measures

)()(# iterpertimeitersoftime ×=

)(#
)(#

large

small
conv Pforitersof

Pforitersof
=η

large

small

large

small
impl)(

)(
P
P

Pforiterpertime
Pforiterpertime

×=η

large

small

large

small
implconv)(

)(
P
P

Pfortime
Pfortime

×=×= ηηη

DD15 Tutorial, Berlin, 17-18 July 2003

PDE varieties
l Evolution (time hyperbolic, time parabolic)

l Equilibrium (elliptic, spatially hyperbolic or
parabolic)

l Mixed, varying by region

l Mixed, of multiple type
(e.g., parabolic with elliptic constraint)

KK =∇•⋅∇−•
∂
∂

=•⋅∇+•
∂
∂

)()(,))(()(α
t

f
t

K=∇•−•⋅∇)(αU

DD15 Tutorial, Berlin, 17-18 July 2003

Common features
l Despite enormous variety of mathematical analysis

required, most computational algorithms for PDEs can be
described with surprisingly few common bulk-
synchronous (SPMD) kernels
n Domain-decomposed loops over mesh points manipulating purely

local data

n Domain-decomposed loops over mesh points (or edges)
manipulating own and near neighbors’ data

n Global reductions and recurrences

l The large variety of operations, yet simplicity of
operation class, invites abstraction and performance
optimization: in short, an object oriented library

DD15 Tutorial, Berlin, 17-18 July 2003

Questions?

l Now is a great time for them!

l Next, we go on to nonlinear Schwarz and advanced
concepts in nonlinear solver software, to finish Lecture
#2 from Thursday afternoon

l Then we start Lecture #3 on applications this morning

l This afternoon’s Lecture #4 is on two research topics:
physics-based preconditioning and PDE-constrained
optimization

l Whatever we don’t finish will be posted on line by this
evening

DD15 Tutorial, Berlin, 17-18 July 2003

Nonlinear Schwarz preconditioning
l Nonlinear Schwarz has Newton both inside and

outside and is fundamentally Jacobian-free
l It replaces with a new nonlinear system

possessing the same root,
l Define a correction to the partition (e.g.,

subdomain) of the solution vector by solving the
following local nonlinear system:

where is nonzero only in the
components of the partition

l Then sum the corrections: to get
an implicit function of u

0)(=uF
0)(=Φ u

thi

thi

)(uiδ

0))((=+ uuFR ii δ
n

i u ℜ∈)(δ

)()(uu ii δ∑=Φ

DD15 Tutorial, Berlin, 17-18 July 2003

Nonlinear Schwarz – picture

1
1

1
1

0 0

u

F(u)

Ri

RiuRiF

DD15 Tutorial, Berlin, 17-18 July 2003

Nonlinear Schwarz – picture

1
1

1
1

0 0

1
1

1
1

0 0

u

F(u)

Ri

Rj

Riu

RjF

RiF

Rju

DD15 Tutorial, Berlin, 17-18 July 2003

Nonlinear Schwarz – picture

1
1

1
1

0 0

1
1

1
1

0 0

u

F(u)

Fi’(ui)

Ri

Rj

Riu

RjF

RiF

Rju

diu+dju

DD15 Tutorial, Berlin, 17-18 July 2003

Nonlinear Schwarz, cont.
l It is simple to prove that if the Jacobian of F(u) is

nonsingular in a neighborhood of the desired root
then and have the same unique
root

l To lead to a Jacobian-free Newton-Krylov algorithm
we need to be able to evaluate for any :
n The residual
n The Jacobian-vector product

l Remarkably, (Cai-Keyes, 2000) it can be shown that

where and
l All required actions are available in terms of !

0)(=Φ u

nvu ℜ∈,
)()(uu ii δ∑=Φ

0)(=uF

vu ')(Φ

JvRJRvu ii
T
ii)()(1' −∑≈Φ

)(' uFJ = T
iii JRRJ =

)(uF

DD15 Tutorial, Berlin, 17-18 July 2003

Nonlinear Schwarz, cont.

Discussion:
l After the linear version of additive Schwarz was

invented, it was realized that it is in the same class of
methods as additive multigrid, in terms of operator
algebra: projection off the error in a set of
subspaces (though linear MG is usually done
multiplicatively)

l After nonlinear Schwarz was invented, it was
realized that it is in the same class of methods as
nonlinear multigrid (full approximation scheme
MG), in terms of operator algebra (though
nonlinear multigrid is usually done multiplicatively)

DD15 Tutorial, Berlin, 17-18 July 2003

Driven cavity in velocity-vorticity coords

02 =
∂
∂

−∇−
y

u
ω

02 =
∂
∂

+∇−
x

v
ω

0Gr2 =
∂
∂

−
∂
∂

+
∂
∂

+∇−
x
T

y
v

x
u

ωω
ω

0)(Pr2 =
∂
∂

+
∂
∂

+∇−
y
T

v
x
T

uT

x-velocity

y-velocity

vorticity

internal energy

hotcold

DD15 Tutorial, Berlin, 17-18 July 2003

Experimental example of nonlinear Schwarz

Newton’s method Additive Schwarz Preconditioned Inexact Newton
(ASPIN)

Difficulty at
critical Re

Stagnation
beyond

critical Re

Convergence
for all Re

DD15 Tutorial, Berlin, 17-18 July 2003

Common software infrastructure for
nonlinear PDE solvers – coming in PETSc

l The user codes to the problem they
are solving (by providing F(u)),
not the algorithm used to solve the
problem

l Implementation of various
algorithms reuse common concepts
and code when possible, without
losing efficiency

Optimizer

Linear
solver

Eigensolver

Time
integrator

Nonlinear
solver

Indicates
dependence

Sens. Analyzer
Vision:

DD15 Tutorial, Berlin, 17-18 July 2003

Encompassing …
l Newton’s method

n Jacobian-free methods
n w/Jacobian-based preconditioned linear solvers

(Newton-PCG)
n w/multigrid linear solvers (Newton-MG)

l Nonlinear multigrid
n a.k.a. Full approximation scheme (FAS)
n a.k.a. MG-Newton

DD15 Tutorial, Berlin, 17-18 July 2003

Software engineering ingredients

l Standard solver interfaces (SLES, SNES)

l Solver libraries

l Automatic differentiation (AD) tools

l Code generation tools

DD15 Tutorial, Berlin, 17-18 July 2003

Algorithm review

F(u) = 0, Jacobian A(u)

Newton

Newton–SOR (1 inner linear sweep over i)

SOR–Newton (1 inner nonlinear sweep over i)

1() ()u u A u F u−← −

1(){ () ()[]}i ji ii i ij j
j i

u u A u F u A u u u−

<

← − − −∑

1() ()ii ii iu u A u F u−← −

DD15 Tutorial, Berlin, 17-18 July 2003

Cute observation

() ()

() () ()[]

ii ii

ji i ij j

A u A u

F u F u A u u u

≈

≈ + −∑
1(){ () ()[]}i ji ii i ij j

j i

u u A u F u A u u u−

<

← − − −∑

1() ()ii ii iu u A u F u−← −
SOR-Newton

… with approximations

… gives Newton-SOR

⇒ (Gauss-Seidel) matrix-free linear relaxation

is very similar to nonlinear relaxation

DD15 Tutorial, Berlin, 17-18 July 2003

Function and Jacobian evaluation

l FAS requires them pointwise

l Newton requires them globally

l Newton-MG requires both
n Newton (outside) globally

n MG (inside) locally

DD15 Tutorial, Berlin, 17-18 July 2003

Enter Automatic Differentiation

l Given code for AD can compute

n A(u) and

n A(u)*w efficiently
l Given code for AD can compute

n and

n efficiently

()F u

()iF u
()iiA u

()ij j
j

A u w∑

DD15 Tutorial, Berlin, 17-18 July 2003

Automated Code generation (“in-lining”)

• Newton method requires a user-provided function and
an AD Jacobian

• Big performance hit if handled directly with
components
§ A outer loop over an inner subroutine that calls a function at

each point is inefficient globally

§ An outer subroutine that loops over all inner points is
wasteful locally (information thrown away)

• Need to have it both ways, depending upon
algorithmic context; user should not see this level of
performance-induced coding complexity

DD15 Tutorial, Berlin, 17-18 July 2003

Coarse grid correction can also be handled

Coarse grid objects generated together with fine

(e.g., PETSc’s DMMG)

l Newton-MG

l MG-Newton

() ()H H

T
H

A Ru c RF u

u u R c

=

← −

)

() () () 0H H HF Ru c F Ru RF u+ − + =
))

DD15 Tutorial, Berlin, 17-18 July 2003

Conclusion

The algorithmic/mathematical building blocks for
Newton-MG and MG-Newton are essentially the
same.

Thus the software building blocks should be also
(and they will be in the next release of PETSc,
version 3.0).

