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1 Introduction

In this paper, BDDC (Balancing Domain Decomposition by Constraints)
and FETI-DP (Dual-Primal Finite Element Tearing and Interconnecting) al-
gorithms with a change of basis for adaptive primal constraints are analyzed.
In our formulation, adaptive primal constraints are introduced from appro-
priate generalized eigenvalue problems. In the authors previous study Kim
et al. [2017a], for the FETI-DP algorithm the adaptive primal constraints are
enforced by using a projection and it was shown that the condition numbers
are controlled by the user-defined tolerance value, which is used to select the
adaptive primal constraints from generalized eigenvalue problems on each
equivalence classes, edges and faces. The analysis in Kim et al. [2017a] could
not be extended to the FETI-DP algorithm with a change of basis formula-
tion on the adaptive primal constraints. In the change of basis formulation,
each primal constraint is transformed into a single unknown and treated just
like unknowns at subdomain vertices as in the standard FETI-DP algorithm.
It is often observed that the change of basis formulation is numerically more
stable than the projection approach.

Here we will propose a more general form of the FETI-DP preconditioner
and extend the analysis to the change of basis formulation. For the proposed
preconditioner, we can obtain the identity ED+PD = I for the averaging and
jump operators , see (8) for their definitions, and thus show that the condition
numbers of the adaptive BDDC and FETI-DP algorithms with the change
of basis formulation are identical. Unlike in the standard FETI-DP precondi-
tioners, the blocks of subdomain matrices and scaling matrices corresponding
to the adaptive primal unknowns appear in the proposed preconditioner. We
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note that in the same mini-symposium an adaptive FETI-DP algorithm with
a change of basis formulation was presented in the talk by Axel Klawonn,
where different generalized eigenvalue problems are introduced and different
tools are used in the analysis of condition numbers.

We note that adaptive primal constraints are often required to obtain ro-
bustness of domain decomposition preconditioners with respect to coefficient
variations in the model problem. For related works, we refer to Galvis and
Efendiev [2010] and Dolean et al. [2012] for two-level additive Schwarz meth-
ods, and Spillane et al. [2013] and Spillane and Rixen [2013] for FETI/BDD
methods. In a pioneering work by Mandel et al. [2012], adaptive BDDC algo-
rithms are developed and tested for 3D problems, where the adaptive primal
constraints are selected from generalized eigenvalue problems on each face.
For 3D problems, more advanced FETI-DP/BDDC algorithms are devel-
oped and analyzed in more recent works, see Klawonn et al. [2016],Calvo and
Widlund [2016], and Kim et al. [2017b]. In Klawonn et al. [2016], Kim et al.
[2017b], and Kim et al. [2017a], the adaptive primal constraints are enforced
by using a projection in the FETI-DP algorithm.

2 BDDC and FETI-DP algorithms

For the presentation of BDDC and FETI-DP algorithms, we introduce a finite
element space X for a given domain Ω, where the model elliptic problem is
define as

−∇ · (ρ(x)∇u(x)) = f(x) (1)

with a zero boundary condition on u(x) and with ρ(x) being highly varying
and heterogeneous. The domain Ω is then partitioned into non-overlapping
subdomains {Ωi}. We assume that the subdomain boundaries do not cut the
triangles in the finite element space X . We use the notation Xi to denote
the restriction of X to Ωi. Each subdomain is then equipped with the finite
element space Xi.

We further introduceWi as the restriction ofXi to the subdomain interface
unknowns, W , and X as the product of local finite element spaces Wi and
Xi, respectively. We note that functions in W or X are decoupled across
the subdomain interfaces. We then select some primal unknowns among the
decoupled unknowns on the interfaces and enforce continuity on them and
denote the corresponding spaces W̃ and X̃.

The preconditioners in BDDC and FETI-DP algorithms will be developed
based on the partially coupled space W̃ and appropriate scaling matrices. In
our adaptive methods, we will select primal unknowns on each nodal equiva-
lence classes of subdomain interfaces. In more detail, edges in 2D and faces in
3D are nodal equivalence classes shared by two subdomains, edges in 3D are
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nodal equivalence classes shared by more than two subdomains, and vertices
are end points of edges in both 2D and 3D.

In our approach, we first include the unknowns at subdomain vertices to
the set of primal unknowns. Adaptive primal constraints will be selected from
eigenvectors of generalized eigenvalue problems on faces and edges using a
given tolerance value. The associated adaptive primal unknowns are then
obtained by applying change of basis on the adaptively selected primal con-
straints and these explicit unknowns can then be assembled strongly just like
unknowns at subdomain vertices.

We introduce notations Ki and Si. The matrices Ki are obtained from
Galerkin approximation of

a(u, v) =

∫

Ωi

ρ(x)∇u · ∇v dx

by using finite element spaces Xi and Si are Schur complements of Ki, which
are obtained after eliminating unknowns interior to Ωi. Let R̃i : W̃ → Wi be
the restriction into ∂Ωi and let S̃ be a partially coupled matrix defined by

S̃ =
N∑

i=1

R̃T
i SiR̃i. (2)

We note that S̃ is then coupled at the unknowns on subdomain vertices and
the adaptive primal unknowns. Let R̃ be the restriction from Ŵ to W̃ , where
the subspace Ŵ of W̃ has unknowns continuous on the subdomain interface.
The discrete problem of (1) is then written as

R̃T S̃R̃ = R̃T g̃,

where g̃ is the vector related to the right hand side f(x).
In the BDDC algorithm the above matrix equation is solved iteratively by

using the following preconditioner,

M−1
BDDC = R̃T D̃S̃−1D̃T R̃, (3)

where D̃ is a scaling matrix of the form

D̃ =
N∑

i=1

R̃T
i DiR̃i.

Here the matrices Di are defined for unknowns in Wi and they are introduced
to resolve heterogeneity in ρ(x) across the subdomain interface. In a more

detail, Di consists of blocks D
(i)
F , D

(i)
E , D

(i)
V , where F denotes corresponding

blocks to faces, E to edges, and V to vertices, respectively. We note that those



4 Hyea Hyun Kim, Eric T. Chung, and Junxian Wang

blocks satisfy the partition of unity for a given F , E, and V , respectively. We
refer to Klawonn and Widlund [2006] for these definitions.

The FETI-DP algorithm is a dual form of the BDDC algorithm. After the
change of unknowns on the adaptively selected constraints, we obtain the
resulting FETI-DP algebraic system

BS̃−1BTλ = d, (4)

where S̃ is the partially coupled matrix defined in (2), and B is the matrix
with entries 0, −1, and 1, which is used to enforce continuity at the remaining
decoupled interface unknowns, i.e., dual unknowns. We introduce the nota-
tion M for the set of Lagrange multipliers λ, of which dimension is identical
to the number of continuity constraints enforced on the remaining decoupled
interface unknowns. The above algebraic system is then solved by an iterative
method with the following preconditioner

M−1
FETI =

N∑

i=1

B
(i)
D,∆Si(B

(i)
D,∆)T (5)

where (B
(i)
D,∆)T : M → Wi is defined by

(B
(i)
D,∆)Tλ|F = D

(j)
F,∆λij on each F ∈ F (i) (6)

and
(B

(i)
D,∆)

Tλ|E =
∑

l∈n(E,i)

D
(l)
E,∆λil on each E ∈ E(i). (7)

Here F (i) and E(i) denote the set of faces and edges of subdomain Ωi, re-
spectively, n(E, i) denotes the set of neighboring subdomain indices sharing
the edge E with Ωi, and λij denotes the part of Lagrange multipliers λ used
to enforce continuity on the decoupled unknowns across Ωi and Ωj . The

matrices D
(j)
F,∆ and D

(l)
E,∆ are given by blocks of D

(j)
F and D

(l)
E as follows,

D
(j)
F,∆ =

(
D

(j)
F,∆∆

D
(j)
F,Π∆

)
, D

(l)
E,∆ =

(
D

(l)
E,∆∆

D
(l)
E,Π∆

)
,

where the subscripts ∆ and Π denote blocks of matrix D
(j)
F and D

(l)
E cor-

responding to the decoupled unknowns and the adaptive primal unknowns,
respectively. For the unknowns at subdomain vertices, which belong to the

initial set of primal unknowns, the values of (B
(i)
D,∆)

Tλ are defined as zero.
Differently from the standard FETI-DP preconditioner, the proposed pre-
conditioner contains the scaling matrices involving the adaptive primal un-
knowns. With this new form of the FETI-DP preconditioner, we can show
that the adaptive FETI-DP algorithm with the change of basis formulation
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has the same spectra except the values zero and one and thus can obtain
the same condition number bound as that of the BDDC algorithm. When no
adaptive primal unknowns are chosen, the preconditioner is identical to that
considered in the standard FETI-DP algorithm.

3 Adaptively enriched coarse spaces

The adaptive constraints will be selected by considering generalized eigen-
value problems on each equivalence class. The idea is originated from the
upper bound estimate of BDDC and FETI-DP preconditioner. In the es-
timate of condition numbers of BDDC and FETI-DP preconditioners, the
average and jump operators are defined as

ED = R̃R̃T D̃, PD = BT
DB, (8)

where B = (B∆ 0) and BT
D = (B

(1)
D,∆ · · · B

(N)
D,∆)T . We note that B : W̃ → M

and BT
D : M → W , see the definition of (B

(i)
D,∆)T in (6) and (7).

The adaptive constraints are then treated just like unknowns at subdo-
main vertices after change of basis formulation in both BDDC and FETI-DP
algorithms, i.e., the continuity on them can be strongly enforced. We note
that in our previous work one can not get ED + PD = I when the standard
FETI-DP preconditioner is considered for the change of basis formulation,
i.e., without the blocks from the adaptive primal unknowns in the definition
of the scaled jump operator BT

D.
We will now introduce generalized eigenvalue problems for each face and

each edge. For a face F , the following generalized eigenvalue problem is con-
sidered

AF vF = λÃF vF , (9)

where

AF = (D
(j)
F )TS

(i)
F D

(j)
F + (D

(i)
F )TS

(j)
F D

(i)
F , ÃF = S̃

(i)
F : S̃

(j)
F .

In the above S
(i)
F denote block matrix of Si to the unknowns interior to F and

S̃
(i)
F are Schur complements of Si obtained by eliminating unknowns except

those interior to F . The matrices then satisfy the following minimal energy
property,

vTF S̃
(i)
F vF ≤ vTSiv, for any v|F = vF , (10)

where v|F denotes the restriction of v to the unknowns interior to F . The
notation A : B is a parallel sum defined as, see Anderson and Duffin [1969],

A : B = A(A+B)+B,
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where (A + B)+ denotes a pseudo inverse. The parallel sum satisfies the
following properties

A : B = B : A, A : B ≤ A, A : B ≤ B, (11)

and it was first used in forming generalized eigenvalues problems by Dohrmann
and Pechstein [2013], of which idea was originated from the energy estimate
of the average operator in the BDDC algorithm.

In (9), the eigenvalues are all positive and we select eigenvectors vF,l, l ∈
N(F ) with associated eigenvalues λl larger than the given λTOL. The follow-
ing constraints will then be enforced on the unknowns in F ,

(AF vF,l)
T (w

(i)
F − w

(j)
F ) = 0, l ∈ N(F ).

After a change of basis, the above constraints can be transformed into explicit
unknowns.

In 3D, we can have an edge, a nodal equivalence class shared by more than
two subdomains, and for an edge E we introduce the following generalized
eigenvalue problem,

AEvE = λÃEvE ,

where

AE =
∑

m∈I(E)

∑

l∈I(E)\{m}

(D
(l)
E )TS

(m)
E D

(l)
E , S̃E =

∏

m∈I(E)

S̃
(m)
E ,

and I(E) denotes the set of subdomain indices sharing E in common, and∏
m∈I(E) S̃

(m)
E is the parallel sum of matrices S̃

(m)
E . We note that S

(m)
E and

S̃
(m)
E are defined similarly as S

(m)
F and S̃

(m)
F . For a given λTOL, the eigenvec-

tors with their eigenvalues larger than λTOL will be selected and denoted by
vE,l, l ∈ N(E). The following constraints will then enforced on the unknowns
in E,

(AEvE,l)
T (w

(i)
E − w

(m)
E ) = 0, l ∈ N(E), m ∈ I(E) \ {i}.

Similarly to the face case, the above constraints can be transformed into
explicit unknowns after the change of basis.

By using the adaptively selected primal unknowns on each face F and edge
E as above, we can obtain the following estimate

〈S̃(I − ED)w̃, (I − ED)w̃〉 ≤ CλTOL〈S̃w̃, w̃〉, (12)

where C is a constant depending on the maximum number of edges and faces
per subdomain, and the maximum number of subdomains sharing an edge
but independent of the coefficient ρ(x). We note that the above inequality is
the key estimate in the analysis of the BDDC algorithm.
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4 Condition number estimate and numerical results

Using the adaptively enriched primal unknowns described in Section 3 and the
estimate in (12), we can obtain the following estimate of condition numbers
for the given λTOL:

Theorem 1. The BDDC algorithm with the change of basis formulation for

the adaptively chosen set of primal unknowns with a given tolerance λTOL

has the following bound of condition numbers,

κ(M−1
BDDCR̃

T S̃R̃) ≤ CλTOL,

and the FETI-DP algorithm with the change of basis formulation for the same

set of adaptively chosen set of primal unknowns has the bound

κ(M−1
FETIBS̃−1BT ) ≤ CλTOL,

where C is a constant depending only on NF (i), NE(i), NI(E), which are

the number of faces per subdomain, the number of edges per subdomain, and

the number of subdomains sharing an edge E, respectively. In fact, the two

algorithms share the same set of eigenvalues except zero and one.

The proof of the above theorem and some numerical examples can be found
in a complete version of this paper Kim et al. [2017c]. In Table 1, we present
some numerical experiments for a 3D model problem. In particular, we con-
sider a random coefficient with value varying between 10−3 to 103, and show
the number of iterations and the number of primal unknowns with various
choice of coarse partition Nd. We observe a very robust performance.

Table 1 Performance of adaptive BDDC and FETI-DP with λF

TOL
= 10, λE

TOL
= 103 for

highly varying and random ρ(x) in (10−3, 103) by increasing Nd and with a fixed H/h = 12:
λmin (minimum eigenvalues), λmax (maximum eigenvalues), Iter (number of iterations),
pnumF (total number of adaptive primal unknowns on faces), and pnumE (total number
of adaptive primal unknowns on edges). pF and pE are the number of adaptive primal
unknowns per face and per edge, respectively.

Nd method λmin λmax Iter pnumF pnumE pF pE

23 Bddc 1.00 5.29 18 21 18 1.75 3.00

Fdp 1.00 5.29 18 21 18 1.75 3.00

33 Bddc 1.01 6.97 26 71 115 1.31 3.19
Fdp 1.00 6.97 27 71 115 1.31 3.19

43 Bddc 1.01 9.45 29 205 320 1.42 2.96
Fdp 1.00 9.45 30 205 320 1.42 2.96
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