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1 Introduction

Nonlinear FETI-DP methods [4, 5, 6, 7] belong to the family of nonoverlapping non-
linear domain decomposition methods and can be used to solve discrete nonlinear
problems A(u) = 0 arising from the discretization of nonlinear partial differential
equations. They can be characterized by decomposition before linearization, and
they can be interpreted as nonlinearly right-preconditioned Newton-Krylov meth-
ods; see [6]. These methods localize work and have shown to be highly scalable to
more than 131072 cores [6].

We decompose the computational domain Ω ⊂Rd , d = 2,3, into N nonoverlap-
ping subdomains Ωi, i = 1, . . . ,N, such that Ω =

∪N
i Ωi. The associated local finite

element spaces are denoted by W (i) and the product space by W =W (1)×·· ·×W (N).
We introduce W̃ ⊂W as the space of all finite element functions from W which are
continuous in certain primal variables, e.g., subdomain vertices.

The fully assembled original finite element problem is equivalent to the nonlinear
FETI-DP saddle point system

A(ũ,λ ) =
[

K̃(ũ)+BT λ − f̃
Bũ

]
=

[
0
0

]
, ũ, f̃ , K̃(ũ) ∈ W̃ ; (1)

see [4]. Nonlinear FETI-DP methods are based on solving (1). Here, Lagrange mul-
tipliers λ ∈V are used to decompose the nonlinear problem into parallel local prob-
lems on subdomains, and the linear constraint Bũ = 0 enforces the continuity of
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1. Mapping: M : W̃ ×V → W̃ ×V .
2. M puts the current iterate into the neighborhood of the solution; see also [1].
3. M(ũ,λ ) is easily computable compared to the inverse action of A(ũ,λ ).

Fig. 1 Properties on the nonlinear preconditioner M for nonlinear FETI-DP methods.

the solution across the interface for nonprimal variables. Here, B is the standard
finite element jump operator and the space of Lagrange multipliers is defined as
V := range(B).

Instead of solving A(ũ,λ ) = 0 directly with Newton’s method, which was de-
noted Nonlinear-FETI-DP-1 in [4, 6], we introduce a nonlinear right-preconditioner
M(ũ,λ ); see Figure 1 for some desirable properties the preconditioner should fulfill.
The resulting nonlinear equation

A(M(ũ,λ )) = 0 (2)

is solved by a Newton-Krylov method. In each Newton iteration the evaluation of the
preconditioner g(k) = M(ũ(k),λ (k)) is computed. The nonlinear right-preconditioner
can be used to describe a (partial) nonlinear elimination of variables [3]. We intro-
duce the index sets E and L, where E is the set of variables which will be eliminated
nonlinearly by the application of M and L is the set of variables which will be lin-
earized. According to these two index sets, we split the variables ũ, and the jump
operator B, ũ = (ũE , ũL), B =

[
BE BL

]
. Using this splitting, the nonlinear system

(1) writes

A(ũE , ũL,λ ) =

AE(ũE , ũL,λ )
AL(ũE , ũL,λ )
BE ũE +BLũL

=

 K̃E(ũE , ũL)+BT
Eλ − f̃E

K̃L(ũE , ũL)+BT
L λ − f̃L

BE ũE +BLũL

=

0
0
0

 . (3)

Since the nonlinear elimination process is restricted to the variables ũE , the non-
linear preconditioner M(ũ,λ ) is linear in ũL and λ . Therefore, we introduce the
following notation

M(ũ,λ ) = M(ũE , ũL,λ ) := (MũE (ũE , ũL,λ ), ũL,λ ) = (MũE (ũL,λ ), ũL,λ ) (4)

and MũE (ũE , ũL,λ ) is defined implicitly by

K̃E(MũE (ũE , ũL,λ ), ũL)+BT
Eλ − f̃E = 0. (5)

Hence, for the evaluation of g(k) := M(ũ(k)E , ũ(k)L ,λ (k)), the nonlinear system

AE(g(k)) = 0 (6)

has to be solved for fixed ũ(k)L and λ (k) until a sufficient tolerance εI is reached, e.g.,
by Newton’s method with the partial update
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g(k)0 = (ũ(k),λ (k)) and l = 0

while ||AE(g
(k)
l )||> εI do

Newton update to g(k)l+1
l = l +1
g(k) = g(k)l

end while

g(k)0 = (ũ(k),λ (k)), l = 0, Jold =
1
2 ||A(g

(k)
0 )||2

while ||AE(g
(k)
l )||> εI do

Newton update to g(k)l+1

Compute: Jnew = 1
2 ||A(g

(k)
l+1)||

2

if Jnew > τJold then
g(k) = g(k)l
break while

else
Jold = Jnew

end if
l = l +1
g(k) = g(k)l

end while

Fig. 2 Left: Computation of M. Right: Computation of M .

g(k)E,l+1 = g(k)E,l − (DũE AE(g
(k)
l ))−1AE(g

(k)
l ); (7)

see also Figure 2 on the left. Thus, the application of the nonlinear right-preconditioner
is nothing else than minimizing the energy JE(ũ,λ ) := 1

2 ||AE(ũ,λ )||2.

Replacing ũE in the second and third line of (3) by MũE (ũL,λ ) yields the nonlin-
ear Schur complement

SL(ũ,λ ) :=
[

K̃L(MũE (ũL,λ ), ũL)+BT
L λ − f̃L

BEMũE (ũL,λ )+BLũL

]
. (8)

Finally, we can solve the resulting nonlinear Schur complement system SL(ũ,λ ) = 0
with standard Newton-Krylov-FETI-DP (see [4]). For more details, we also refer
to [6].

2 Nonlinear FETI-DP Methods Using Energy Reducing
Nonlinear Preconditioning

It is possible that the nonlinear elimination presented above leads to an increase in
the global energy J(ũ,λ ) = 1

2 ||A(ũ,λ )||
2, e.g., if the strong nonlinearities are not

contained in the index set E. In this case, our nonlinear FETI-DP methods can show
a loss of robustness and performance compared to the traditional Newton-Krylov-
FETI-DP approach; see Section 3. It can also happen, that our nonlinear FETI-DP
methods do not converge to a solution due to an inappropriate coarse space.

To increase the convergence radius for Newton type methods it is standard to en-
force a sufficient decrease in the global energy J in each Newton step [9]. This can be
achieved by controlling the Newton update. If the Newton update does not result in
a sufficient decrease of the energy, the Newton step is rejected and replaced, e.g., by
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a steepest descent step. To prove global convergence properties, usually additional
assumptions about the step length have to be fulfilled, which can be controlled by a
line search approach enforcing certain conditions of, e.g., Armijo or Wolfe type [8].
For the use of line search in nonlinear FETI-DP methods, see [4].

Analogously to classical Newton-Krylov approaches, it is also possible to apply
these strategies to nonlinear right-preconditioned Newton-Krylov methods, which
is not considered in this paper. Nevertheless, we additionally have to control the
application of the nonlinear preconditioner to enforce an energy decrease in each
step, or, at least, to avoid an increase with respect to J.

To enlarge the convergence radius of our nonlinear FETI-DP methods we there-
fore have to compute g(k) not only with respect to JE = 1

2 ||AE ||2 but also J = 1
2 ||A||

2;
cf. (3).

As described above, the application of the nonlinear preconditioner M in our
nonlinear FETI-DP methods leads to a minimization of 1

2 ||AE(ũ,λ )||2, but we do
not control how the global energy J evolves during this update process. To do so,
we introduce an approximation M (ũ,λ ) of M(ũ,λ ), which at least does not in-
crease the global energy J. The idea is, to stop the Newton iteration and choose
M (ũ,λ ) = gl whenever the updated gl+1 does not fulfill the simple decrease prop-
erty J(gl+1) ≤ τJ(gl) for the global energy functional. We thus avoid oversolving
in the inner Newton iteration, somewhat analogously to inexact Newton methods
with carefully chosen forcing terms [2]. To make this property a robust decrease
condition, we choose 0 < τ ≤ 1 and, if not noted otherwise, we use τ = 0.8 in our
experiments. For more details see Figure 2 on the right.

It is obvious that this approach never leads to an increased number of inner New-
ton iterations but it can end up with two extreme cases. First, if the decrease prop-
erty is fulfilled for all inner Newton steps we have M (ũ,λ ) = M(ũ,λ ). Second,
if the decrease condition is not fulfilled for the first inner Newton step, we obtain
M (ũ,λ ) = (ũ,λ ) and the application of M reduces to the identity. The latter case is
identical to a single step of Nonlinear-FETI-DP-1, regardless which set of variables
E is chosen. Let us briefly recall the definition of Nonlinear-FETI-DP-1 from [6],
where the variable set E is chosen to be the empty set. Let us also remark that in the
second case all factorizations from the inner Newton iteration can be recycled for
the subsequent outer Newton iteration and therefore no additional work compared
with a Nonlinear-FETI-DP-1 step is necessary.

Let us remark that we handle the very first computation of M in a slightly dif-
ferent way, since we do not want to rely on the initial value ũ(0). We do not stop the
Newton iteration if J(g1) > τJ(g0) but we also compute gl until J(gl) ≤ τJ(gl−1),
l ≥ 2, is not fulfilled. In a similar way we can control the computation of the initial
value K̃(ũ(0)) = f̃ −BT λ (0) (see [4]) in the Nonlinear-FETI-DP-1 approach.

In each outer Newton iteration, we now have to solve the linear system

DA
(
M (ũ(k),λ (k))

)(
δ ũ(k),λ (k)

)T
= A

(
M (ũ(k),λ (k))

)
. (9)

Here, the entries in the right hand side belonging to the index set E can not be
guaranteed to be zero due to the fact that M might just be an approximation to M.
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3 Numerical Results

In this section, we present numerical results for nonlinear FETI-DP methods using
the newly introduced energy reducing and robust preconditioner and compare them
to the nonlinear FETI-DP methods introduced in [4, 5, 6, 7] and to the traditional
Newton-Krylov-FETI-DP approach. To provide a fair comparison, we choose for
all methods the same initial values u(0)(x1,x2) = x1 ·x2 · (1−x1) · (1−x2), λ (0) = 0,
and the same tolerances εI and εO. Inner Newton iterations are stopped if 1

2 ||AE ||2 ≤
εI = 1e−12 or the decrease condition is not fulfilled and the global Newton iteration
is stopped if 1

2 ||A||
2 ≤ εO = 1e−12.

We refer to the nonlinear FETI-DP methods als NL-i, i = 1, . . . ,4, and to the
nonlinear FETI-DP methods using the new nonlinear preconditioner as NL-ane-i,
i = 1, . . . ,4. The traditional Newton-Krylov-FETI-DP method is denoted NK. Let
us briefly recall the different nonlinear variants from [6] by specifying the nonlinear
elimination sets. We choose E = /0 in NL-1, E = [I,∆ ,Π ] in NL-2, E = [I,∆ ] in NL-
3, and E = I in NL-4, where I denotes the set of variables inside subdomains, Π
denotes the set of primal variables, and ∆ denotes the set of all remaining interface
variables.

As a model problem, we choose a two dimensional problem based on the scaled
p-Laplace operator for p = 4

α∆pu := div(α|∇u|p−2∇u).

We consider

−α∆4u − β∆2u = 1 in Ω
u = 0 on ∂Ω,

with the computational domain Ω = (0,1)2 and the coefficients α = 1e5 and β = 1.
The computational domain is decomposed into square subdomains and dis-

cretized by piecewise linear finite elements. We choose a problem, where the non-
linearities have a nonlocal character. Here, columns of subdomains are intersected
by channels of width H/2 from the upper to the lower boundary of Ω , where H
is the width of a subdomain; see the left picture in Figure 3. To simulate a less
structured domain decomposition, we also consider subdomains with ragged edges;
see the right picture in Figure 3 for details. For all our tests we used a sequen-
tial MATLAB implementation and we exclusively consider subdomain vertices as
primal constraints. Due to our sequential implementation, we choose and evaluate
different metrics or indicators to obtain a good estimation of the parallel potential of
the different nonlinear FETI-DP preconditioner variants. As a metric for the global
communication, we count the number of Krylov iterations (denoted # Krylov It.).
For the local work, we count the number of factorizations of DK̃BB or DK̃II (de-
noted by “Local Fact.”), and we also count the factorizations of the FETI-DP coarse
problem (denoted by “Coarse Fact.”). Factorizations of the coarse problem are nec-
essary in the computation of the initial value for NL-1 and in the evaluation of the
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Fig. 3 Left: Channels with a width of H/3, where H is the width of a subdomain; α = 1e5. Right:
Domain decomposition with ragged edges, H/h = 16.

nonlinear preconditioner for NL-2, while the evaluation of the preconditioner for
NL-3 and NL-4 does not include factorizations of the coarse problem. Therefore,
we subdivide the section “Coarse Fact.” into factorizations of the coarse problem
in the first/inner loop (denoted by “in.”) and in the main loop (denoted by “out.”).
For all methods the number of outer coarse factorizations is equal to the number of
Newton steps.

For our model problem, the index set E does not contain the nonlinearities for the
NL-4 and NL-ane-4 method. As a result the performance of NL-4 is worse than the
performance of the traditional NK approach and the number of local factorizations
of NL-ane-4 is equal to the number of Newton steps plus one. This shows that the
elimination of the interior variables is inappropriate for this problem, but NL-ane-4
detects this and avoids spending time in the evaluation of the inappropriate nonlinear
preconditioner. As a consequence, NL-ane-4 is nearly equivalent to NL-1 without
the computation of the initial value or to NK and thus superior compared to NL-4.
The difference of one factorization results from the additional step in the inner loop
in the very first Newton step.

For the structured decomposition into square subdomains NL-2, NL-3, NL-ane-
2, and NL-ane-3 perform quite similar. The number of local solves for NL-ane-2 and
NL-ane-3 is half as large as for NL-2 and NL-3, but the number of Krylov iterations
is slightly higher.

For the less structured decomposition with ragged edges the chosen coarse space
(subdomain vertices) is insufficient for NL-2 and NL-3, so these methods do not
converge, but using the new approach leads to convergence and saves about 50% of
Newton steps and Krylov iterations compared to the traditional NK approach. The
new strategy thus increases the convergence radius for NL-2 and NL-3.

4 Conclusion

We have introduced a strategy to automatically decide on the computational effort
to be spent in the inner Newton iteration in nonlinear domain decomposition. The
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Table 1 Model problem “Nonlocal Nonlinearities”; comparison of standard nonlinear FETI-DP
methods and nonlinear FETI-DP methods using the new approach (“NL-ane-*”); channels with a
width of H/2; α = 1e5 inside channels and β = 1 elsewhere; see also Figure 3; domain Ω =(0,1)2;
decomposed into square subdomains; H/h = 16; εI = 1e−12; εO = 1e−12; τ = 0.8; computed on
Schwarz.

Channels 2D

H/h = 16; exact FETI-DP; computed on Schwarz, α = 1e5
Normal Edges Ragged Edges

N Problem |E| Nonlinear Local Coarse Krylov Local Coarse Krylov
Size Solver Factor. Factor. It. Factor. Factor. It.

in. out. in. out.
NK 13 - 13 173 13 - 13 2108

0 NL-1 no Init 13 - 13 188 13 - 13 2227
0 NL-ane-1 15 6 9 124 14 5 9 1211
0 NL-1 22 12 10 150 26 17 9 1170

4225 NL-ane-2 16 11 5 68 16 10 6 794
16 4225 4225 NL-2 30 24 6 86 div div div div

4216 NL-ane-3 23 0 7 95 25 0 9 1134
4216 NL-3 30 0 6 86 div div div div
3856 NL-ane-4 17 0 13 254 14 0 13 2227
3856 NL-4 47 0 13 284 43 0 13 2277

NK 15 - 15 1391 15 - 15 3064
0 NL-1 no Init 14 - 14 1471 14 - 14 3139
0 NL-ane-1 16 6 10 741 15 5 10 2149
0 NL-1 23 13 10 730 36 25 11 2387

66049 NL-ane-2 16 10 6 447 19 11 8 1664
256 66049 66049 NL-2 31 25 6 395 div div div div

65824 NL-ane-3 17 0 6 429 18 0 8 1683
65824 NL-3 35 0 6 379 div div div div
58624 NL-ane-4 19 0 14 1647 15 0 14 3139
58624 NL-4 54 0 14 1681 50 0 14 3156

strategy considers the reduction of the global energy resulting from performing lo-
cal Newton steps on the subdomains. The Newton iteration performed for the local
elimination is stopped (and the step is discarded) when the resulting decrease in the
global energy is not satisfactory. This can also be interpreted as an inexact nonlinear
elimination. We have shown, that the local work can be significantly reduced com-
pared to standard nonlinear FETI-DP methods while the number of Newton steps
and Krylov iterations remains nearly constant. We have also shown, that the depen-
dency on the coarse space is reduced for nonlinear FETI-DP methods and that the
robustness of the resulting methods is dramatically increased.
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Fig. 4 Model problem “Nonlocal Nonlinearities”; comparison of nonlinear FETI-DP methods and
nonlinear FETI-DP methods using energy minimizing preconditioning; channels with a width
of H/3; p = 4 and α = 1e5 in the channels and β = 1 elsewhere; see also Figure 3; domain
Ω = (0,1)2; decomposed into square subdomains; H/h = 16; εI = 1e−12; εO = 1e−12; τ = 0.8;
computed on Schwarz. Top: Normal edges; Bottom: Ragged edges
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