
Improving the Parallel Performance of
Overlapping Schwarz Methods by Using a
Smaller Energy Minimizing Coarse Space

Alexander Heinlein1, Axel Klawonn1, Oliver Rheinbach2, and Olof Widlund3

1 Introduction

The GDSW preconditioner (Generalized Dryja, Smith, Widlund; see also [8]) is
a two-level additive overlapping Schwarz preconditioner with exact local solvers
(cf. [16]) using a coarse space constructed from energy-minimizing functions. It
can be written in the form
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where K0 = ΦT KΦ is the coarse space matrix and the K̃i = RiKRT
i represent the

overlapping local problems; cf. [4]. The matrix Φ is the essential ingredient of the
GDSW preconditioner. It is composed of coarse space functions which are dis-
crete harmonic extensions from the interface into the interior degrees of freedom
of nonoverlapping subdomains. The values on the interface are restrictions of the
elements of the nullspace of the operator to the edges, vertices, and faces of the de-
composition. Therefore, for a scalar elliptic problem, the coarse basis functions form
a partition of unity on all subdomains which do not touch the Dirichlet boundary.

For Ω ⊂ R2 being decomposed into John subdomains, the condition number of
the GDSW preconditioner is bounded by
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{alexander.heinlein,axel.klawonn}@uni-koeln.de
2Institut für Numerische Mathematik und Optimierung, Fakultät für Mathematik und Informatik,
Technische Universität Bergakademie Freiberg, Akademiestr. 6, 09596 Freiberg, Germany. e-mail:
oliver.rheinbach@math.tu-freiberg.de
3Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,
New York 10012, USA. e-mail: widlund@cims.nyu.edu

1



2 Alexander Heinlein, Axel Klawonn, Oliver Rheinbach, and Olof Widlund

cf. [3, 4]. Here, H is the size of a subdomain, h the size of a finite element, and δ is
the overlap.

GDSW-type preconditioners have succesfully been developed for almost incom-
pressible elasticty, e.g., [5] and problems in H(curl) [2]. An efficient parallel imple-
mentation of the GDSW preconditioner based on Trilinos [13] was recently intro-
duced by the authors in [10]. Although the preconditioner can use geometric infor-
mation, a focus in [10] was to make use of the Trilinos infrastructure to construct
the preconditioner algebraically from the assembled sparse stiffness matrix.

A coarse space for Overlapping Schwarz methods in two dimensions related to
but smaller than the standard GDSW coarse space has been considered in [6]. Fol-
lowing [7], in this paper, we consider two reduced versions of the GDSW coarse
space in three dimensions denoted by Option 1 and Option 2.2 in [7]. These spaces
are also smaller than the standard GDSW coarse space. In the following, we will
denote this reduced GDSW coarse space as RGDSW. Our reduced coarse spaces
have a relation to discretization methods such as Multiscale Finite Element Meth-
ods (MsFEM), which also use harmonic extensions; see, e.g., [14, 17].

2 A Reduced GDSW Coarse Space

We have implemented the RGDSW coarse space in our parallel preconditioner [10]
since, among the proposed options in [7], it is the most algebraic. As in the standard
version, we introduce coarse basis functions that form a partition of unity on the
interface of the domain decomposition. Again, we extend the values on the interface
as discrete harmonic functions into the interior of the nonoverlapping subdomains.

Let Sn be the index set of all subdomains which share the node n. A node ni is
called an ancestor of n j if Sn j ⊂Sni . If no other node is an ancestor of a node n j, it
is called a coarse node. Using this definition, we can construct for each coarse node
ni a coarse basis function ϕi such that

∑
ni coarse node

ϕi = 1

on all subdomains which do not touch the Dirichlet boundary. A coarse basis func-
tion ϕi is constructed as follows:

ϕi(n) =
{ 1
|Cn| if ni ∈ Cn,

0 otherwise,

with Cn being the set of all ancestors of the interface node n; cf. Fig. 1 (top). On the
Dirichlet boundary, we set all coarse basis functions to zero.

Another option to define a reduced coarse space, using basis function based on an
inverse distance weighting approach, has been introduced in [7, eq. (5)]. In particu-
lar, according to [7, eq. (5)], the values of the coarse basis function on the interface
are chosen as
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Fig. 1 Plot of the coarse basis function corresponding to the center node for the reduced GDSW
coarse spaces, denoted Option 1 (top) and Option 2.2 (bottom) in [7]. Here, we assume the struc-
tured decomposition of a cube into 4x4x4 cubic subdomains.

ϕi(n) =

{
1/di(n)

1/d1(n)+1/d2(n)+1/d3(n)+1/d4(n)
if ni ∈ Cn, i ∈ {1,2,3,4}

0 otherwise
(3)

for components with four coarse nodes. Here, di(n), i = 1, . . . ,4 is the distance to
the coarse node ni. For components with any number of coarse nodes, we set

ϕi(n) =


1/di(n)

∑
n j∈Cn

1/d j(n)
if ni ∈ Cn,

0 otherwise
(4)

on the interface; cf. Fig. 1 (bottom). This construction is denoted as Option 2.2
in [7]. As we will observe in section 4, this choice leads to a better convergence,
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Dimension of the Coarse Space
# subdomains Standard GDSW RGDSW (Option 1&2.2) Reduction

23 19 1 94.74%
43 279 27 90.32%
83 2863 343 88.02%

163 25695 3375 86.87%
243 89999 12167 86.48%
323 217279 29791 86.29%
403 429039 59319 86.17%
803 3507679 493039 85.94%

1003 6880599 970299 85.90%
10003 7.0 ·109 1.0 ·109 85.73%

100003 7.0 ·1012 1.0 ·1012 85.72%

Table 1 Dimension of the coarse spaces and the reduction due to the use of the reduced coarse
spaces in percent. We use one subdomain for each processor core.

scalar elliptic compressible linear elasticity
face paths edge paths face paths

Option 1 α = 1 α = 2 α = 1
Option 2.2 α = 0 α = 1 α = 0

Table 2 Values of α in the condition number bound (5). For the definition of quasi-monotone
paths, see [7].

however, it relies on additional geometric information to allow for the computation
of the distance between interface nodes and the relevant coarse nodes. Therefore, it
can be regarded as less algebraic compared to Option 1.

The advantage of these two reduced GDSW coarse problems over the classical
GDSW coarse problem is their smaller size; cf. Fig. 2. Indeed, in 3D, for struc-
tured decompositions, they are smaller by more than 85 percent; cf. Table 1. This
can be a significant advantage when striving for better parallel scalability on larger
supercomputers.

For the reduced coarse spaces, for scalar elliptic problems in 3D as well as elas-
ticity, the condition number of the preconditioned operator satisfies

κ(M−1
RGDSWA)≤C

(
1+

H
δ

)(
1+ log

(
H
h

))α

, (5)

where α is given in Table 2; cf. [7] and also see Fig. 4.

3 Implementation

Our parallel implementation of the GDSW preconditioner and its more recent ver-
sion with a reduced coarse space size (here denoted by RGDSW) is based on the
implementation described in [10, 9, 12, 11]. We use Trilinos version 12.0; cf. [13].
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Fig. 2 We compare for a Laplace model problem in three dimensions: dimension of the coarse
spaces (left) and corresponding numbers of iterations for the standard and the reduced GDSW
coarse space (right); we use H/h = 30 and two layers of overlap. Computations run on the
JUQUEEN supercomputer.

In our experiments presented here, for simplicity, we use a structured decomposition
of our cubic computational domain into cubic subdomains. The overlapping subdo-
main problems and the coarse problem are solved using Mumps 4.10.0 (cf. [1])
in sequential mode. On the JUQUEEN BG/Q supercomputer, we use the IBM XL
compilers 12.1 and the ESSL 5.1 when compiling Trilinos and the GDSW precon-
ditioner. On the magnitUDE supercomputer at Universität Duisburg-Essen, we use
the Intel compiler and the Intel MKL 2017.1.132.

4 Numerical Results

Based on the infrastructure given by our parallel implementation [10], we com-
pare the reduced coarse space (denoted by RGDSW) to the standard coarse space
(denoted by GDSW) for a scalar elliptic problem in 3D. Our numerical results in
Fig. 2, and 3 show that the smaller dimension of the new coarse spaces Option 1
and Option 2.2 proposed in [7] indeed help to increase the parallel efficiency of the
method significantly; see also Tables 3 and 4. By “Total Time”, we denote the total
time to solution including the assembly of the problem. The “Setup Time” includes
the assembly of the problem and the setup of the preconditioner. This includes the
factorization of the subdomain matrices. Finally, “Solver Time” only denotes the
time spent in the GMRES iteration. The number of Krylov iterations for the new
methods increases but only slightly in comparison with the standard GDSW pre-
conditioner (cf. Fig. 2, right), as also demonstrated in [7]; the increase is too small
to be reflected in the computation times. Indeed, as shown in Fig. 3, the total time
to solution is always smaller for the new coarse spaces.
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Fig. 3 Detailed times for the computations of a Laplace model problem in three dimensions using
the standard GDSW coarse space and the reduced GDSW coarse space; we use H/h = 30 and two
layers of overlap. Computations run on the JUQUEEN supercomputer.

H/h Option 1 Option 2.2
H/δ = 4 H/δ = 8 H/δ = 4 H/δ = 8

4 18 - 17 -
8 20 23 19 21

16 21 26 20 23
32 22 28 21 25
64 23 28 21 25

Fig. 4 Numbers of iterations versus log(H/h) for the reduced GDSW coarse space and 1/H = 4.
Computations run on the magnitUDE supercomputer.
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puter ([15]) at JSC Jülich. GCS is the alliance of the three national supercomputing centres HLRS
(Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie der Wis-
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