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1 Introduction

We are interested in an Optimal Control Problem (OCP) where the constraint
is given by an elliptic partial differential equation (PDE):

−∇ · (κ(x)∇y(x)) = u(x) x ∈ Ω,
y(x) = 0 x ∈ ∂Ω. (1)

The goal is to choose a control variable u from an admissible set Uad to
minimize the discrepancy between the solution and the desired state ŷ(x),
i.e. to minimize the objective functional

J(y, u) =
1

2

∫
Ω

|y(x)− ŷ(x)|2dx +
λ

2

∫
Ω

|u(x)|2dx. (2)

We formulate and analyze substructuring algorithms for the model elliptic
OCP (1)–(2), which originates from the optimal stationary heating example
with controlled heat source, on a bounded domain Ω ⊂ Rd. In our setting, y
denotes the temperature at a particular point, κ(x) is the thermal conductiv-
ity of Ω, and λ > 0 is a regularization parameter. We assume u, ŷ ∈ L2(Ω) to
ensure a solution of the problem. For simplicity, we consider Uad = L2(Ω) as
the set of all feasible controls. Then from the first-order optimality conditions
(cf. [8]), we obtain the adjoint equation corresponding to the problem (1)–(2)

−∇ · (κ(x)∇p(x)) = y(x)− ŷ(x) x ∈ Ω,
p(x) = 0 x ∈ ∂Ω, (3)
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together with the optimality condition

p(x) + λu(x) = 0. (4)

We apply Domain Decomposition (DD) methods, more specifically substruc-
turing methods to solve the state and corresponding adjoint equations. For
similar applications of substructuring methods to solve linear-quadratic ellip-
tic OCPs, see [6]. Although our techniques can be extended to multiple sub-
domains, we only consider a decomposition into two non-overlapping subdo-
mains for the sake of simplicity and compact presentation. For further details
on DD methods applied to OCPs, see [1, 2]. We analyze the convergence of
Dirichlet-Neumann (DN) [3] and Neumann-Neumann (NN) [4] DD methods
for the underlying elliptic PDEs (1)–(3). For more details on DN and NN
methods, see [7]. By linearity it suffices to consider the homogeneous prob-
lems, ŷ(x) = 0, and to analyze convergence to zero, since the corresponding
error equations coincide with these homogeneous equations.

2 Dirichlet-Neumann algorithm

We first apply the Dirichlet-Neumann algorithm to solve the PDEs (1) and
(3), coupled through the condition (4). Suppose the domain Ω is decomposed
into two non-overlapping subdomains, Ω1 and Ω2. We denote by yi, ui, pi the
restriction of y, u, p to Ωi, and by ni the unit outward normal for Ωi on the
interface Γ := ∂Ω1 ∩ ∂Ω2. Then given two initial guesses h0y(x) and h0p(x)
along the interface Γ , we write the DN algorithm for both state and adjoint
equations (we do not write explicitly the homogeneous boundary conditions
on the outer boundaries satisfied by the iterates): for k = 1, 2, . . . compute

−∇ ·
(
κ(x)∇yk1

)
= uk1 in Ω1,

yk1 = hk−1y on Γ,
−∇ ·

(
κ(x)∇pk1

)
= yk1 in Ω1,

pk1 = hk−1p on Γ,
(5)

−∇ ·
(
κ(x)∇yk2

)
= uk2 in Ω2,

∂n2
yk2 = −∂n1

yk1 on Γ,
−∇ ·

(
κ(x)∇pk2

)
= yk2 in Ω2,

∂n2
pk2 = −∂n1

pk1 on Γ,
(6)

together with the update conditions:

hky(x) = θyy
k
2 |Γ + (1− θy)hk−1y (x), hkp(x) = θpp

k
2 |Γ + (1− θp)hk−1p (x), (7)

where θy, θp are two relaxation parameters, one for the state variable and
another for the adjoint variable. Note that the adjoint problem in (5) can be
derived from the first order stationarity conditions for the modified objective
function

J1(y, u) =
1

2

∫
Ω1

|y − ŷ|2 dx +
λ

2

∫
Ω1

|u|2 dx−
∫
Γ

κ
∂y

∂n
· hk−1p dS(x).
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The adjoint system for (6) can be interpreted similarly.
We analyze the convergence of the DN algorithm (5)-(6)-(7) for the 1d

case with Ω1 = (0, α), Ω2 = (α, 1) and κ(x) = 1. By the condition (4), we
write uki = −pki /λ for i = 1, 2. We denote by D(m) := dm

dxm . Eliminating pk1 , p
k
2

from (5)–(6), we obtain

D(4)yk1 + 1
λy

k
1 = 0,

yk1 (α) = hk−1y ,

D(2)yk1 (α) =
hk−1
p

λ ,

D(4)yk2 + 1
λy

k
2 = 0,

D(1)yk2 (α) = D(1)yk1 (α),
D(3)yk2 (α) = D(3)yk1 (α),

(8)

with the homogenous boundary conditions yk1 (0) = 0, D(2)yk1 (0) = 0, yk2 (1) =
0, and D(2)yk2 (1) = 0 at the outer boundaries. Since λ > 0, we set µ4 := 1/λ.
To simplify notation later, we set

γ1 = cosh
(
µα√
2

)
, γ2 = cosh

(
µ(1−α)√

2

)
, σ1 = sinh

(
µα√
2

)
, σ2 = sinh

(
µ(1−α)√

2

)
,

η1 = cos
(
µα√
2

)
, η2 = cos

(
µ(1−α)√

2

)
, ρ1 = sin

(
µα√
2

)
, ρ2 = sin

(
µ(1−α)√

2

)
.

Then the general solution of (8) becomes

yk1 (x) = A sinh

(
µx√

2

)
cos

(
µx√

2

)
+B cosh

(
µx√

2

)
sin

(
µx√

2

)
, (9)

where A =
hk−1
y σ1η1−µ2hk−1

p γ1ρ1

σ2
1+ρ

2
1

, B =
hk−1
y γ1ρ1+µ

2hk−1
p σ1η1

σ2
1+ρ

2
1

, and

yk2 (x) = C sinh
(
µ(1−x)√

2

)
cos
(
µ(1−x)√

2

)
+E cosh

(
µ(1−x)√

2

)
sin
(
µ(1−x)√

2

)
, (10)

with

C = −Aσ1σ2ρ1ρ2 + γ1γ2η1η2
η22 + σ2

2

+B
γ1η1σ2ρ2 − σ1ρ1γ2η2

η22 + σ2
2

,

E = −Aγ1η1σ2ρ2 − σ1ρ1γ2η2
η22 + σ2

2

−Bσ1σ2ρ1ρ2 + γ1γ2η1η2
η22 + σ2

2

.

Using (9) and (10), the update conditions (7) are simplified to

hky = (1− θy)hk−1y + θy
(
hk−1y v − µ2hk−1p w

)
,

hkp = (1− θp)hk−1p + θp

(
hk−1
y

µ2 w + hk−1p v

)
,

(11)

with the two functions

v(α, µ) = −ρ1ρ2η1η2 + σ1σ2γ1γ2
(σ2

1 + ρ21) (η22 + σ2
2)

, w(α, µ) =
γ1σ1ρ2η2 − ρ1η1γ2σ2
(σ2

1 + ρ21) (η22 + σ2
2)

, (12)

and we obtain the following convergence results.
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Theorem 1 (Convergence in the symmetric case). For symmetric sub-
domains, α = 1/2 in (5)-(6)-(7), the DN algorithm for the coupled PDEs
converges linearly for 0 < θy, θp < 1, θy 6= 1/2, θp 6= 1/2. For θy = 1/2 = θp,
it converges in two iterations. Convergence is independent of the value of λ.

Proof. For α = 1/2, v(α, µ) = −1, w(α, µ) = 0. The expressions (11) become

hky = (1− 2θy)hk−1y = (1− 2θy)
k
h0y, h

k
p = (1− 2θp)h

k−1
p = (1− 2θp)

k
h0p.

Therefore the convergence is linear for 0 < θy, θp < 1, θy 6= 1/2, θp 6= 1/2.
If θy = 1/2 = θp, we have h1y = 0 = h1p, and hence the desired converged
solution is achieved after one more iteration.

We now focus on the more interesting asymmetric subdomain case (α 6= 1/2).

Theorem 2 (Convergence in the asymmetric case). Suppose α 6= 1/2.
Then the DN algorithm (5)-(6)-(7) for the coupled PDEs converges in at most
three iterations if and only if (θy, θp) equals either (Λ+, Λ−) or (Λ−, Λ+),
where

Λ± :=
1

(1− v)
± |w|

(1− v)
√

(1− v)2 + w2
. (13)

Proof. For α 6= 1/2, we set h̄kp := µhkp, h̄
k
y :=

hk
y

µ . We rewrite the updating

terms (11) in the matrix form(
h̄ky
h̄kp

)
=

[(
1− θy 0

0 1− θp

)
+

(
θyv(α, µ) −θyw(α, µ)
θpw(α, µ) θpv(α, µ)

)](
h̄k−1y

h̄k−1p

)
.

Note that the matrix of the system on the right side (which we call S) is
never zero for any particular set of values θy, θp. So we do not get two-step
convergence for α 6= 1/2, unlike in Theorem 1. We claim that there is some
positive integer n, for which Sn = 0. This results in(

h̄ny
h̄np

)
= Sn

(
h̄0y
h̄0p

)
=

(
0
0

)
,

so that the DN algorithm converges in n + 1 iterations. The spectral radius
of S is

Υ (θy , θp, α, µ) := max

{∣∣∣∣1 −
1

2
(θy + θp) (1 − v) ±

1

2

√
(θy − θp)2 (1 − v)2 − 4θyθpw2

∣∣∣∣} .
For each α ∈ (0, 1) and µ > 0, we solve the system

1− 1

2
(θy + θp) (1− v) = 0, (θy − θp)2 (1− v)

2 − 4θyθpw
2 = 0 (14)

simultaneously for θy, θp to obtain (Λ+, Λ−), as in equation (13). Υ being
symmetric with respect to θy, θp, (Λ−, Λ+) is also a solution of the system
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(14). Therefore Υ (Λ±, Λ∓, α, µ) = 0, resulting in S2 = 0 and hence three
step convergence to the exact solution. For any other values of (θy, θp), the
spectral radius of S is non-zero, so the algorithm cannot converge to the exact
solution in a finite number of iterations.

Remark 1. Since v(α, µ) ≤ 0 (which can be seen from (12) by noting that
γi ≥ |ηi| , σi ≥ |ρi| for all α, µ), equation (13) implies that Λ− ∈ (0, 1) and
Λ+ ∈ (0, 2). Note that unlike the symmetric case α = 1/2, it is possible to
have convergence for θy > 1; for α = 0.99 and µ =

√
8, convergence in three

steps occurs for (θy, θp) = (1.000685490, 0.9621364448).

Remark 2. For a symmetric decomposition of a rectangular domain in 2D
into two equal subdomains, it can be shown that Λ± = 0.5 still gives two-step
convergence in the DN method. For an asymmetric decomposition, however,
the optimal values may be different, see the last example in Section 4.

3 Neumann-Neumann algorithm

To write the NN algorithm for both state and adjoint equations (1)-(3), we
again divide Ω into two non-overlapping subdomains, Ω1 and Ω2. We use
the same notations as in Section 2. Given two initial guesses g0y(x) and g0p(x)
along the interface Γ , the NN algorithm is (again we do not write explicitly
the homogeneous boundary conditions on the outer boundaries satisfied by
the iterates): for k = 1, 2, . . . compute the approximations

−∇ ·
(
κ(x)∇yki

)
= uki in Ωi,

yki = gk−1y on Γ,
(15)

followed by the correction step,

−∇ ·
(
κ(x)∇ψki

)
= 0 in Ωi,

∂ni
ψki = ∂n1

yk1 + ∂n2
yk2 on Γ,

(16)

and similarly for the adjoint equation, we compute

−∇ ·
(
κ(x)∇pki

)
= yki in Ωi,

pki = gk−1p on Γ,
(17)

followed by the correction step,

−∇ ·
(
κ(x)∇ϕki

)
= 0 in Ωi,

∂ni
ϕki = ∂n1

pk1 + ∂n2
pk2 on Γ.

(18)

The update conditions for gky and gkp are
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gky (x) = gk−1y (x)− θy
(
ψk1 |Γ + ψk2 |Γ

)
,

gkp(x) = gk−1p (x)− θp
(
ϕk1 |Γ + ϕk2 |Γ

)
. (19)

We again analyze the convergence for the NN algorithm (15)–(19) for
Ω1 = (0, α), Ω2 = (α, 1) and κ(x) = 1. By (4), we have uki = −pki /λ for
i = 1, 2. Eliminating pk1 , p

k
2 from (15)-(17), we obtain

D(4)yk1 + 1
λy

k
1 = 0,

yk1 (α) = gk−1y ,

D(2)yk1 (α) =
gk−1
p

λ ,

D(4)yk2 + 1
λy

k
2 = 0,

yk2 (α) = gk−1y ,

D(2)yk2 (α) =
gk−1
p

λ ,

(20)

with the homogenous boundary conditions yk1 (0) = 0, D(2)yk1 (0) = 0, yk2 (1) =
0, and D(2)yk2 (1) = 0 at the outer boundaries. With µ4 := 1/λ, the solutions
of (20) become

yk1 (x) = E1 sinh
(
µx√
2

)
cos
(
µx√
2

)
+ E2 cosh

(
µx√
2

)
sin
(
µx√
2

)
,

yk2 (x) = F1 sinh
(
µ(1−x)√

2

)
cos
(
µ(1−x)√

2

)
+ F2 cosh

(
µ(1−x)√

2

)
sin
(
µ(1−x)√

2

)
,

where

E1 =
gk−1y σ1η1 − µ2gk−1p γ1ρ1

σ2
1 + ρ21

, E2 =
gk−1y γ1ρ1 + µ2gk−1p σ1η1

σ2
1 + ρ21

,

F1 =
gk−1y σ2η2 − µ2gk−1p γ2ρ2

σ2
2 + ρ22

, F2 =
gk−1y γ2ρ2 + µ2gk−1p σ2η2

σ2
2 + ρ22

.

Finally solving ψki , ϕ
k
i in (16)-(18) and replacing them in (19) we get the

updating terms

gky = gk−1y − θy(gk−1y z1 + µ2gk−1p z2),
gkp = gk−1p − θp(gk−1p z1 − 1

µ2 g
k−1
y z2),

(21)

with the functions z1(α, µ) = µ√
2

(
σ1γ1+ρ1η1
σ2
1+ρ

2
1

+ σ2γ2+ρ2η2
σ2
2+ρ

2
2

)
, and z2(α, µ) =

µ√
2

(
σ1γ1−ρ1η1
σ2
1+ρ

2
1

+ σ2γ2−ρ2η2
σ2
2+ρ

2
2

)
.

Theorem 3 (Convergence of the NN algorithm). The NN algorithm for
the coupled PDEs (15)–(19) converges in at most three iterations if (θy, θp)

is any of the pairs (Θ+, Θ−) , (Θ−, Θ+) , where Θ± := 1
z1
± |z2|

z1
√
z21+z

2
2

.

Proof. Setting ḡkp := µgkp , ḡ
k
y :=

gky
µ , we rewrite the updating terms (21) as:(

ḡky
ḡkp

)
=

(
1− θyz1 −θyz2
θpz2 1− θpz1

)(
ḡk−1y

ḡk−1p

)
.
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The matrix on the right side (we call P ) is never zero for any set of values
θy, θp. But like in the DN method, if we have Pn = 0, for some n, then we
get (

ḡny
ḡnp

)
= Pn

(
ḡ0y
ḡ0p

)
=

(
0
0

)
,

resulting in convergence in n + 1 iterations. The spectral radius of P is:

Φ (θy, θp, α, µ) := max

{∣∣∣∣1− 1
2 (θy + θp) z1 ± 1

2

√
(θy − θp)2 z21 − 4θyθpz22

∣∣∣∣}.

We solve the system 1− 1
2 (θy + θp) z1 = 0, (θy − θp)2 z21 −4θyθpz

2
2 = 0 simul-

taneously for each α ∈ (0, 1) and µ > 0 to obtain a solution (Θ+, Θ−) as in the
Theorem. Due to the symmetric nature of Φ with respect to θy, θp, (Θ−, Θ+)
is another solution pair of the system of equations. Thus Φ (Θ±, Θ∓, α, µ) = 0,
resulting in P 2 = 0 and therefore three step convergence to the exact solution.

4 Numerical Examples

We perform numerical experiments to verify the convergence rate of the DN
and NN algorithms for the model problem (1)–(2) with λ = 1/2, ŷ(x) = 0.
In the top two plots of Figure 1, we observe two-step convergence of the DN
method for α = 1/2 on the left, and three-step convergence for α = 0.6 for the
optimal choice of (Λ+, Λ−) = (0.62, 0.57) on the right. The two bottom plots
of Figure 1 show the convergence behavior of the DN algorithm for different
choices of θy and θp. On the left panel, we get θy = θp = 1/2 to be the best
parameters for the symmetric case, whereas on the right (Λ+, Λ−) yields the
fastest convergence for α = 0.6. For the NN experiment, we plot on the left
panel of Figure 2 the first three iterates of the state variable for the optimal
choice of (Θ+, Θ−) = (0.30, 0.16), and on the right the convergence curves
for various values of the parameters θy, θp. In Figure 3, we show convergence
of the DN and NN methods for the 2D problem:

−∆y(x) = u(x) x ∈ Ω = (0, 1)2,
y(x) = 0 x ∈ ∂Ω,

with an interface Γ = {0.6} × (0, 1) and λ = 1/2. Note that the optimal
parameters are different from the 1d case when the decomposition is non-
symmetric, as the choice of (0.5, 0.5) appears to perform better than (Λ+, Λ−)
in the DN example. A full analysis of the 2D case will be the subject of a
future paper. We are also working on the analysis of the case of multiple
subdomains, where it is not clear if one can choose relaxation parameters to
obtain finite termination of the algorithm; see [5] for the uncontrolled case.
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Fig. 1 Convergence of the iterative solution of the DN method: in two iterations for the

symmetric case on the top left, and in three iterations for α = 0.6 on the top right; error
curves for various values of θy , θp for α = 1/2 on the bottom left, and for α = 0.6 on the
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