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1 Introduction

Domain Decomposition Methods are the most widely used methods for solving
large linear systems that arize from the discretization of partial differential equa-
tions. The one level versions of these method are in general not scalable1, since
communication is just between neighboring subdomains, as it was pointed out al-
ready in [15], and one must add an additional coarse correction in order to share
global information between subdomains. Examples of early such coarse corrections
are proposed in [5, 6] for the additive Schwarz method, and in [12, 13, 14, 12, 7] for
Neumann-Neumann and FETI methods, for a comprehensive treatement, see [16].

We are interested here in Neumann-Neumann methods, for which the one level
condition number κ1 and the two-level condition number κ2 with a piecewise con-
stant coarse space satisfy the estimates

κ1 ≤
C
H2

(
1+ log2(

H
h
)

)
, κ2 ≤C

(
1+ log2(

H
h
)

)
, (1)

where H is the typical size of a subdomain, h is the mesh size, and the constant
C is indepandent of h and H, see [4, 12, 13]. These condition number estimates
guarantee robust convergence when Neumann-Neumann is used as a preconditioner
for a Krylov method, up to the logarithmic term.

We are interested here in understanding precisely where this logarithmic term
is coming from, and how it can be removed using an appropriately chosen coarse
space. To this end, we study the Neumann-Neumann method directly as an itera-
tive method, not as a preconditioner, and consider the Laplace equation and two

1 Université de Genève, Section de mathématiques, e-mail: {Faycal.Chaouqui}{Martin.
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1 Notable exceptions are the time dependent wave equation with finite speed of propagation [8],
and the Laplace equation in certain molecular simulations with specific geometry [2, 3].
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Fig. 1: Left: Strip decomposition. Right: Decomposition with a cross point

specific decompositions: a strip decomposition into a one dimensional sequence of
subdomains, and a decomposition including cross points, see Figure 1.

For the strip decomposition, we will show that in the case of Dirichlet boundary
conditions, the one level iterative Neumann-Neumann algorithm is convergent and
can be weakly scalable, even without coarse grid, for a specific setting, and there
are no polylogarithmic terms in the convergence estimate. In the case of Neumann
boundary conditions, a coarse space of constant functions is needed to make the
Neumann-Neumann method weakly scalable, and again there are no polylogarith-
mic terms in the convergence estimate. For a decomposition with cross points, we
show that the iterative Neumann-Neumann algorithm does not converge, due to log-
arithmically growing modes at the cross point, and following ideas in [9, 11, 10],
we enrich the coarse space with the corresponding modes to obtain a convergent
iterative Neumann-Neumann algorithm without polylogarithmic growth.

2 Neumann-Neumann algorithm for a strip decomposition

We start by studying the convergence and weak scalability of the Neumann-Neumann
algorithm for the Laplace equation,

−∆u = f , in Ω ,
u(a, ·) = 0, u(b, ·) = 0,
u(·,0) = 0, u(·,L) = 0,

(2)

on the rectangular domain Ω := (a,b)× (0,L) decomposed into strips, as shown in
Figure 1 on the left, where a j = a+ jH for j = 0, . . . ,N, and Ω j :=(a j−1,a j)×(0,L)
for j = 1, . . . ,N. Given an initial guess g0

j at the interfaces, where we define gn
0 =

gn
N = 0 for convenience, the Neumann-Neumann algorithm computes for iteration

index n = 0,1, . . . first solutions of the Dirichlet problems

−∆un
j = f j in Ω j,

un
j(a j−1, ·) = gn

j−1, un
j(a j, ·) = gn

j ,
(3)
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with outer boundary conditions un
j(·,0) = un

j(·,L) = 0, followed by solving Neu-
mann problems on interior domains Ω j, j = 2,3, . . . ,N−1, given by

−∆ψn
j = 0 in Ω j,

∂xψn
j (a j−1, ·) = (∂xun

j(a j−1, ·)−∂xun
j−1(a j−1, ·))/2,

∂xψn
j (a j, ·) = (∂xun

j(a j, ·)−∂xun
j+1(a j, ·))/2,

(4)

and on the left and right most subdomains the Neumann problems are

−∆ψ
n
1 = 0 in Ω1,

ψ
n
1 (a, ·) = 0, ∂xψ

n
1 (a1, ·) = (∂xun

1(a1, ·)−∂xun
2(a1, ·)/2,

−∆ψ
n
N = 0 in ΩN ,

ψ
n
N(b, ·) = 0, ∂xψ

n
N(aN−1, ·) = (∂xun

N(aN−1, ·)−∂xun
N−1(aN−1, ·))/2,

all with outer boundary conditions ψn
j (·,0) = 0 and ψn

j (·,L) = 0, j = 1, . . . ,N. The
new interface traces are then obtained by the updating formula

gn+1
j := gn

j − (ψn
j (a j, ·)+ψ

n
j+1(a j, ·))/2, j = 1, . . . ,N−1. (5)

To study the convergence of this iterative Neumann-Neumann method, it suffices by
linearity to apply the algorithm to Equation (2) with f = 0, and to study the conver-
gence of the approximate solution un to the zero solution. Since the subdomains are
rectangles, the iterates can be expanded in a sine series,

un
j(x,y) =

∞

∑
m=1

ûn
j(x,m)sin(kmy), ψ

n
j (x,y) =

∞

∑
m=1

ψ̂
n
j (x,m)sin(kmy), (6)

where km := mπ

L , which allows us to study the convergence based on the Fourier
coefficients.

Lemma 1. Let ûn(m) =
[
ûn

1(a1,m), ûn
2(a2,m), . . . , ûn

N−1(aN−1,m)
]T ∈ RN−1, then

for2 N ≥ 3 we have ûn(m) = T (m,H)ûn−1(m), where T (m,H) ∈ R(N−1)×(N−1) is
given by

T (m,H) =− 1
4sinh2(kmH)



1 1
cosh(kmH) −1 0 · · · · · · 0

0 2 0 −1
. . .

...

−1 0 2 0 −1
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 2 0 −1

...
. . . −1 0 2 0

0 · · · · · · 0 −1 1
cosh(kmH) 1


.

2 For N = 2 the structure of T (m,H) is not the same since there are no inner subdomains.
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Proof. For each m≥ 1 and j = 2, . . . ,N−1, un
j(x,m) and ψn

j (x,m) satisfy

k2
mûn

j −∂xxûn
j = 0, k2

mψ̂n
j −∂yyψ̂n

j = 0,
ûn

j(a j−1,m) = ĝn
j−1(m), ψ̂n

j (a j−1,m) = (∂xun
j(a j−1,m)−∂xun

j−1(a j−1,m))/2,
ûn

j(a j,m) = ĝn
j(m), ψ̂n

j (a j,m) = (∂xun
j(a j,m)−∂xun

j+1(a j,m))/2.

The solution of the Dirichlet problems on interior subdomains are thus

ûn
j(x,m) = ĝn

j(m)
sinh(km(x−a j−1))

sinh(kmH)
+ ĝn

j−1(m)
sinh(km(a j− x))

sinh(kmH)
, j = 2, . . . ,N−1,

and on the subdomains on the left and right we get

ûn
1(x,m) = ĝn

1(m)
sinh(km(x−a0))

sinh(kmH)
, ûn

N(x,m) = ĝn
N−1(m)

sinh(km(aN− x))
sinh(kmH)

.

Similarly for the Neumann problems on the interior subdomains, we obtain

ψ̂
n
j (x,m) =

(
2 ĝn

j(m)
cosh(kmH)

sinh(kmH)
−

ĝn
j−1(m)

sinh(kmH)
−

ĝn
j+1(m)

sinh(kmH)

)
cosh(km(x−a j−1))

2sinh(kmH)

+

(
2 ĝn

j−1(m)
cosh(kmH)

sinh(kmH)
−

ĝn
j−2(m)

sinh(kmH)
−

ĝn
j(m)

sinh(kmH)

)
cosh(km(a j− x))

2sinh(kmH)
,

and for the first and last subdomains we find

ψ̂
n
1 (x,m) =

(
2 ĝn

1(m)
cosh(kmH)

sinh(kmH)
−

ĝn
2(m)

sinh(kmH)

)
sinh(km(x−a0))

2cosh(kmH)
,

ψ̂
n
N(x,m) =

(
2 ĝn

N−1(m)
cosh(kmH)

sinh(kmH)
−

ĝn
N−2(m)

sinh(kmH)

)
sinh(km(aN− x))

2cosh(kmH)
.

Using now (5) and the fact that ûn
j(a j,m) = ĝn

j(m) for each m≥ 1, we get the stated
recurrence relation.

Lemma 2. If H/L > ln(1+
√

2)/π then for any m≥ 1 we have ‖T (m,H)‖∞ < 1.

Proof. It is straightforward to see that ‖T (m,H)‖∞≤ 1
sinh2 (kmH)

for each m and since

m 7→ 1
sinh2 (kmH)

is strictly decreasing for m≥ 1, we have that 1
sinh2 (kmH)

< 1
sinh2 (k1H)

which is strictly smaller than 1 if H/L > ln(1+
√

2)/π , which concludes the proof.

Theorem 1. For N ≥ 3 Neumann-Neumann satisfy the L2 error bound(
N−1

∑
j=1
‖un

j(a j, ·)‖2
2

)1/2

≤ 1
sinh2n (k1H)

(
N−1

∑
j=1
‖u0

j(a j, ·)‖2
2

)1/2

.
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Fig. 2: Left: dependence of
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|λk(B)|, k = 1, . . . ,3 on the mesh size h in semi-log

scale. Right: dependence of the semi-log scale slope of |λk(B)|, k = 1, . . . ,3 on k,
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Proof. Since for N ≥ 3 we have that ‖T (m,H)‖2 ≤
√
‖T (m,H)‖∞‖T (m,H)‖1 ≤

1
sinh2 (k1H)

, and using the Parseval identity ‖un
j(a j, ·)‖2

2 =
L
2 ∑

∞
m=1 ûn

i (a j,m)2, we get
the result stated.

Theorem 1 shows that under a minimal assumption, the one level Neumann-
Neumann algorithm for the strip decomposition is weakly scalable, provided H re-
mains fixed, i.e. more and more subdomains of the same size are added, see also
[2, 3] for the corresponding Schwarz scaling. If the original Laplace problem (2)
has however Neumann conditions at x = 0 and x = L, then the interior subdomains
become floating in the Neumann-Neumann algorithm, and a minimal coarse space
consisting of piecewise constant functions is required in order to remove the kernel,
and this is sufficient to make the algorithm weakly scalable as in previous case with
an L2 bound as in Theorem 1, see [1].

3 Neumann-Neumann algorithm with cross points

We now study the convergence properties of the iterative Neumann-Neumann algo-
rithm for decompositions with cross points, like the one shown in Figure 1 on the
right. Since in this case the algorithm might be undefined at the continuous level due
to possible discontinuity at the cross point, we study numerically the convergence
of the fixed point iteration

un+1 = Bun + f, (7)

where B ∈Rd×d and f ∈Rd are obtained by discretizing the Neumann-Neumann al-
gorithm using five-points stencil central finite differences. We first show in Figure 2
on the left the three largest (double) eigenvalues in modulus of B when the mesh
is refined. We clearly see logarithmic growth, and the iterative Neumann-Neumann
method will diverge as soon as the mesh size h is small enough, in our example
h = 0.12. Hence, in contrast to the classical alternating and parallel Schwarz meth-
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Fig. 3: Left: dominant eigenfunction of B. Right: second eigenfunction of B.

ods, the Neumann-Neumann method can then not be used as an iterative solver. We
note however also that the logarithmic growth of the first dominant eigenvalue is
faster than the second and the third one. On the right in Figure 2, we show how the
growth rate (the slope) of these diverging modes depends on the eigenvalue index k.
We see that the growth decays very rapidly, like 1/kα with α = 10/3, so when h goes
to zero, there are only O(k) divergent modes (those with corresponding eigenvalues
greater than 1 in the absolute value), where 1/kα log2(h). 1, i.e k ∼ (log2(h))1/α .

We next show in Figure 3 the two corresponding dominant eigenmodes of B for a
mesh size h = 0.01. Since their eigenvalues are double eigenvalues, we chose from
the two dimensional subspace of eigenfunctions the one vanishing at the interface
aligned with the x axis; the other eigenmode has the same shape, just rotated by 90
degrees. We see that the cross point causes the iterative Neumann-Neumann method
to generate eigenmodes with a singular behavior at the cross point, and these modes
lead to divergence of the iterative Neumann-Neumann method.

To avoid such logarithmic growth, and obtain an convergent iterative Neumann-
Neumann method, one can remove the few divergent modes using an enriched
coarse space. Let F be a subspace of Rd and F⊥ its orthogonal complement with
standard inner product. Then we can use the reordering

B =

[F F⊥

F B̃ C
F⊥ G B̂

]
, u =

[
F ũ
F⊥ û

]
, f =

[
F f̃
F⊥ f̂

]
, (8)

and the iterative Neumann-Neumann algorithm (7) becomes

[
ũn+1
ûn+1

]
=

[
B̃ C
G B̂

] [
ũn
ûn

]
+

[
f̃
f̂

]
. (9)

To correct the problem of the divergent modes, we propose to use the iteration
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Fig. 4: Left: error of iteration (10) for different dimension of F . Right: same, but
using orthogonal iteration to approximate F .

ûn+1 = B̂ûn + f̂+Gũn, (10a)

(I− B̃)ũn+1 =Cûn+1 + f̃, (10b)

where (10b) is solved exactly.

Theorem 2. If F consists of all eigenfunctions of B with respective eigenvalues
greater than 1 in absolute value, then iteration (10) converges for any u0 ∈ Rd .

Proof. From (10), we obtain

ûn+1 = (B̂+G(I− B̃)−1C)ûn + f̂+G(I− B̃)−1̃f,

ũn+1 = (I− B̃)−1(Cûn+1 + f̃),

and hence the method is convergent iff ρ(B̂+G(I− B̃)−1C)< 1. Since F consists of
the divergent eigenmodes of B we have that G is zero and the condition for conver-
gence becomes ρ(B̂) < 1, which is satisfied since B̂ does not contain the divergent
eigenmodes of B.

We show in Figure 4 on the left the error of iteration (10) with a random initial
guess u0 as a function of the iteration number n for different choices of the dimen-
sion of F , using the same mesh size h = 0.01 in a semi-log scale. We see that with
dim(F) = 2, the iterations start already to converge while without correction the
iteration diverges. Increasing the dimension of F improves convergence further. Us-
ing just orthogonal iterations to approximate F gives already satisfactory results, as
shown on the right in Figure 4.

4 Conclusion

We showed that the logarithmic growth in the condition number estimate of the
Neumann-Neumann method comes from modes which are generated at cross points
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in the decomposition. Without cross points, the iterative Neumann-Neumann method
is convergent and can be made scalable just using a constant per subdomain in the
coarse space. With cross points, one can add the logaritmically divergent modes to
the coarse space to obtain a convergent iterative Neumann-Neumann method, with-
out logarithmic term in the convergence estimate. We also showed that orthogonal
iteration permits already to include such modes numerically, and we are currently
trying to determine these coarse functions analytically.
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