
FROSch: A Fast And Robust Overlapping
Schwarz Domain Decomposition Preconditioner
Based on Xpetra in Trilinos

Alexander Heinlein, Axel Klawonn, Sivasankaran Rajamanickam, and Oliver
Rheinbach

1 Introduction

This article describes a parallel implementation of a two-level overlapping Schwarz
preconditioner with the GDSW (Generalized Dryja–Smith–Widlund) coarse space
described in previous work [12, 10, 15] into the Trilinos framework; cf. [16]. The
software is a significant improvement of a previous implementation [12]; see Sec. 4
for results on the improved performance.

In the software, now named FROSch (Fast and Robust Overlapping Schwarz),
efforts were made for the seamless integration into the open-source Trilinos frame-
work, and to allow the use of heterogeneous architectures, such as thosewithNVIDIA
accelerators. These goals were achieved in the following way:

1. The GDSW preconditioner, i.e., the FROSch library, is now part of Trilinos
as a subpackage of the package ShyLU. The ShyLU package provides distributed-
memory parallel domain decomposition solvers, and node-level direct solvers for
the subdomains. Currently, ShyLU has two other domain decomposition solvers,
i.e., a Schur complement solver [19] and an implementation of the BDDC method
by Clark Dohrmann, and node-level (in)complete LU factorizations (basker [2]),
fastilu [18]) , Cholesky factorization (tacho [17]) and triangular solves (hts [3]).
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2. FROSch now supports the Kokkos programming model through the use of
the Tpetra stack in Trilinos. The FROSch library can therefore profit from the
efforts of the Kokkos package to obtain performance portability by template meta-
programming, on modern hybrid architectures with accelerators. During this process
the GDSWcode has beenmodified and improved significantly. The resulting FROSch
library is now designed such that different types of Schwarz operators can be added
and combined more easily. Consequently, various different Schwarz preconditioners
can be constructed using the FROSch framework. Recently, FROSch has been used in
a three-level GDSW implementation [13, 14] and for the solution of incompressible
fluid flow problems [11].

2 The GDSW Preconditioner

We are concerned with finding the solution of a sparse linear system

�G = 1, (1)

arising from a finite element discretization with finite element space + = +ℎ (Ω) of
an elliptic problem, such as, a Laplace problem, on a domainΩ ⊂ R3 , 3 = 2, 3, with
sufficient Dirichlet boundary conditions. The GDSW preconditioner [4, 5] is a two-
level additive overlapping Schwarz preconditioner with exact local solvers (cf. [21])
using a coarse space constructed from energy-minimizing functions. It is meant to
be used in combination with the Krylov methods from the packages Belos [1] or
AztecOO. In particular, let Ω be decomposed into # nonoverlapping subdomains
Ω8 , 8 = 1, ..., # , and overlapping sudomains Ω′

8
, 8 = 1, ..., # , respectively, and

+8 = +
ℎ (Ω′

8
), 8 = 1, ..., # , be the corresponding local finite element spaces. Further,

we define standard restriction operators '8 : + → +8 , 8 = 1, ..., # , from the global
to the local finite element spaces. Then, the Schwarz operator of the GDSW method
can be written in the form

%GDSW = "−1
GDSW� = Φ�

−1
0 Φ

) � +
#∑
8=1

')8 �
−1
8 '8�, (2)

where �0 = Φ) �Φ is the coarse space matrix, and the matrices �8 = '8�'
)
8
,

8 = 1, ..., # , represent the overlapping local problems; cf. [5]. The matrix Φ is the
essential ingredient of the GDSW preconditioner. It is composed of coarse space
functions which are discrete harmonic extensions from the interface to the interior
degrees of freedom of nonoverlapping subdomains. The values on the interface are
typically chosen as restrictions of the elements of the null space of the operator �̂
to the edges, vertices, and faces of the decomposition, where �̂ is the global matrix
corresponding to � but with homogeneous Neumann boundary condition. Therefore,
for a scalar elliptic problem, the coarse basis functions form a partition of unity on
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all subdomains that do not touch the Dirichlet boundary. The condition number of
the GDSW Schwarz operator is bounded as

^(%GDSW) ≤ �
(
1 + �

X

) (
1 + log

(
�

ℎ

))2
, (3)

where ℎ is the size of a finite element, � the size of a nonoverlapping subdomain,
and X the width of the overlap; see [4, 5, 6]. The exponent of the logarithmic term
can be reduced to 1 for variants of the GDSW coarse space; see, e.g., [7, 8].

However, the dimension of the standard GDSW coarse space is in the order of
dim(+0) = O(dim(null( �̂)) (#V +#E +#F)),where #V , #E , and #F are the global
numbers of vertices, edges, and faces of the nonoverlapping domain decomposition,
respectively. The dimension of the coarse space is fairly high. Therefore, GDSW
coarse spaces of reduced dimension have very recently been introduced in [8]; see
also [15] for parallel results. For general problems, the dimension of the reduced
GDSW coarse spaces is dim(+0) = O(dim(null( �̂)) (#V)), which is, especially
for unstructured decompositions, significantly smaller. Both types of GDSW coarse
spaces are implemented in FROSch, and in Sec. 4, we present performance results.

3 Software Design of the FROSch Library

During the integration of the FROSch library into Trilinos, the code was substantially
restructured. In particular, in the transition from the Trilinos Epetra (used in [12])
to the newer Xpetra sparse matrix infrastructure, it was extended to a framework
of Schwarz preconditioners. Additionally, parts of the code have been improved and
functionality has been added. As opposed to [12], FROSch is completely based on
Xpetra.
A Framework for Schwarz Preconditioners As described in Sec. 2, the GDSW
preconditioner is a two-level overlapping Schwarz method using a specific coarse
space. The GDSW Schwarz operator is of the form

%2−Lvl = Φ�
−1
0 Φ

) �︸       ︷︷       ︸
%0

+
#∑
8=1

')8 �
−1
8 '8�︸       ︷︷       ︸
%8

;

cf. (2); and therefore, it is the sum of local overlapping Schwarz operators %8 ,
8 = 1, ..., # , and a global coarse Schwarz operator %0. There are different ways to
compose Schwarz operators %8 , 8 = 0, ..., # , e.g.:

Additive: %ad =
#∑
8=0
%8

Multiplicative: %mu = � − (� − %# ) (� − %#−1) · · · (� − %0)
%mu−sym = � −∏#

8=0 (� − %8)
∏#−1
8=0 (� − %#−1−8)

Hybrid: %hy−1 = � − (� − %0)
(
� −

#∑
8=0
%8

)
(� − %0)

%hy−2 = U%0 + � − (� − %# ) · · · (� − %1);
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Distributed Map Overlapping Map Repeated Map
(colored boxes) (colored boxes)

Fig. 1: Heuristic reconstruction of the domain decomposition interface: uniquely distributed map
(left); extension of the uniquely distributed map by one layer of elements resulting in an overlapping
map, where the overlap contains the interface (middle); by selection, using the lower subdomain
ID, the interface is defined (right).

cf. [21]. Using the FROSch library, it is simple to construct the different vari-
ants once the ingredients are set up. Let us explain this based on the example of
the class GDSWPreconditioner in FROSch, which is derived from the abstract
class SchwarzPreconditioner and contains an implementation of the GDSW
preconditioner: in FROSch, the SumOperator is used to combine Schwarz op-
erators in an additive way. The additive first level is implemented in the class
AlgebraicOverlappingOperator and the coarse level of the GDSW precon-
ditioner in the class GDSWCoarseOperator. Therefore, the GDSWPreconditioner
is basically just the following composition of Schwarz operators:

GDSWPreconditioner = SumOperator( AlgebraicOverlappingOperator,
GDSWCoarseOperator )

By replacing the SumOperator by a ProductOperator, the levels can be coupled
in a multiplicative way. The different classes for Schwarz operators are all de-
rived from an abstract SchwarzOperator, and the classes SchwarzOperator and
SchwarzPreconditioner are both derived from the abstract Xpetra::Operator.
Transition from Epetra to Xpetra To facilitate the use of FROSch on novel ar-
chitectures, the code was ported completely from Epetra data structures to Xpetra.
As Xpetra provides a lightweight interface to Epetra as well as Tpetra, FROSch
can now profit from the computational kernels from Kokkos, while maintaining
compatibility to older Epetra-based software such as LifeV [9].
Improvement of theCode&Additional Functionality The efficiency of the code
was improved and new functionality was added as part of this redesign. In particular,
the routines for the computation of local-to-global mappings and the identification
of the interface components have been rewritten and therefore improved with respect
to their performance; see Sec. 4 for the numerical results.

Two important features have been added. First, we have introduced the possibility
to reconstruct a domain decomposition interface algebraically based on a unique
distribution of the degrees of freedom into subdomains and the nonzero pattern
of the matrix; cf. Fig. 1. This works particularly well for scalar elliptic problems
and piecewise linear elements. In general, the best performance is obtained when
a RepeatedMap is provided by the user; cf. Fig. 2. This map corresponds to the
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Previous implementation from [12]:
Teuchos::RCP<SOS::SOS> M_SOS(new SOS::SOS(numVectors ,numSubdomainsPerProcess ,

M_DomainMap ,M_RangeMap));
Teuchos::RCP<SOS::SOSSetUp> M_SOSSetUp(new SOS::SOSSetUp(

numSubdomainsPerProcess ,dimension ,dofs,M_rowMatrixTeuchos ,M_DomainMap));
M_SOSSetUp ->FirstLevel(M_ProcessMapOverlap);
M_SOSSetUp ->SecondLevel(M_ProcessMapNodes ,M_ProcessMap ,SOS::LifeVOrdering ,

M_LocalDirichletBoundaryDofs ,"Mumps",useRotations ,M_LocalNodeList);
M_SOSSetUp ->SetUpPreconditioner(M_SOS,"Mumps",secondLevelSolverParameterList ,

Type);

Current implementation Shylu/FROSch:
Teuchos::RCP<FROSch::GDSWPreconditioner <SC,LO,GO,NO> > FROSchGDSW(new FROSch::

GDSWPreconditioner <SC,LO,GO,NO>(A,ParameterList);
FROSchGDSW ->initialize(Dimension ,Overlap,RepeatedMap);
FROSchGDSW ->compute();

Fig. 2: Comparison of the user-interface for the previous implementation of the GDSW solver (top)
and the current implementation in FROSch (bottom). The setup is split into the initialize and
compute phases instead of the two levels.

nonoverlapping domain decomposition and is replicated in the interface degrees of
freedom. Secondly, we have introduced a function that identifies Dirichlet boundary
conditions based onmatrix rowswith only diagonal entries. This is important because
the coarse basis functions are zero on the Dirichlet boundary.
User Interface The user-interface of the FROSch library has been completely
re-designed. Compared to the previous implementation, where the setup of the
preconditioner was split into the first and second level, it is now split into the phases
initialize and compute, also reducing the number of required lines of code to
construct the GDSW preconditioner; cf. Fig. 2. In the initialize phase, all data
structures that correspond to the structure of the problem are built, i.e., the index
sets of the overlapping subdomains and the interface are identified and the interface
values of the coarse basis are computed. In the compute phase, all computations
related to the values of the matrix � are performed, i.e., the overlapping problems
are factorized, the interior values of the coarse basis are computed, and the coarse
problem is assembled and factorized. Therefore, the initialize and compute
phases can be seen as the symbolic and the numerical factorizations of a direct
solver: if only the the values in the matrix � change, the preconditioner can be
updated using compute, and if the structure of the problem is changed, initialize
has to be called to update the preconditioner. Also, FROSch provides a Stratimikos
interface for easier use in applications; Stratimikos provides a unified framework
for solvers and preconditioners in Trilinos.
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Fig. 3: Weak scalability of the two-level Schwarz preconditioner using the GDSW coarse space
for the Poisson model problem: (Left) in two dimensions with overlap X = 5ℎ and �/ℎ = 100
(approximately 50k degrees of freedom per sudomain); (Right) in two dimensions with overlap
X = 2ℎ and �/ℎ = 14 (approximately 50k degrees of freedom per sudomain). Comparison of
the previous implementation (blue) and the current implementation in FROSch, i.e., the Epetra
(orange) and the Tpetra (green) versions available through the Xpetra interface. The number of
iterations (black) are identical for all versions.

Fig. 4:Weak scalability of the two-level Schwarz preconditionerwith overlap X = 1ℎ for the Poisson
model problem in three dimensions with �/ℎ = 14 (approximately 35k degrees of freedom per
subdomain): comparison of the GDSW and the RGDSW coarse space using the Tpetra version of
the FROSch implementation.

4 Performance of the New FROSch Software

Here, the performance of the new software is compared against the previous imple-
mentation. We consider a Poisson model problem on Ω ⊂ R3 , 3 = 2, 3, with full
Dirichlet boundary condition, discretized by piecewise quadratic finite elements.
We compare the performance of the previous implementation, which is based on
Epetra, and the current implementation in FROSch. In particular, the Epetra and
the Tpetra version of the current implementation, which are both available through
the Xpetra interface, are compared. As a Krylov-solver GMRES from Belos [1] is
used with a relative tolerance of 10−7 for the unpreconditioned residual. For the local
and coarse problems, the native direct solver in Trilinos, KLU, is used; only in Fig. 5,
Mumps is used as the direct solver. We always use one subdomain per processor core.
The computations were performed on the magnitUDE supercomputer at Universität
Duisburg-Essen, which has 15k cores (Intel Xeon E5-2650v4, 12C, 2.2GHz) and
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Fig. 5: Weak scalability for the Poisson model problem in two dimensions with �/ℎ = 200
(approximately 195k degrees of freedom per sudomain): comparison of FROSch using the GDSW
coarse space and the one-level overlapping Schwarz preconditioner Ifpack with overlap X = 20ℎ;
numbers of GMRES iterations (left) and total solver times (right). Using Mumps for all direct solves.
For 1 024 subdomains, Ifpack did not converge within 500 GMRES iterations.

a total memory of 36 096GB. Here, we do not exploit any node parallelism when
using Tpetra. We consider the setup phase and the solution phase and include the
identification of the interface components in the setup phase. This part does not scale
very well and can takes a significant amount of time for a large number of processes;
cf. [12]. In Fig. 3 (left), we present numerical results for the GDSW preconditioner
in two dimensions. We observe that, in the solution phase, the new implementation is
always faster than the previous implementation. The time for the setup phase is com-
parable. The results in Fig. 3 (right), where we compare the preconditioners in three
dimensions, are more interesting. Again, we observe that the solution phase is faster
by a similar factor. However, in three dimensions, the setup phase in the FROSch
implementation is much faster compared to the previous implementation. We also
observe that the Tpetra version is always slightly faster than the Epetra version of
the new code. In Fig. 4, the GDSW and the RGDSW coarse spaces are compared
for the Tpetra version of the FROSch implementation. We observe that, due to the
increasing dimension of the coarse space, the computation time can be improved
when using reduced dimension coarse spaces. This effect becomes stronger when
the number of subdomains is increased; cf. [15]. Finally, we present a comparison of
FROSch using the GDSW coarse space and Ifpack [20], i.e., a one-level overlapping
Schwarz preconditioner, in Fig. 5. We observe that Ifpack does not scale as it lacks
a second level. Already for 64 subdomains, FROSch converges much faster, and for
1 024 subdomains, Ifpack does not converge within a maximum number of 500
GMRES iterations.
Conclusion We presented the new Trilinos library FROSch that allows the flexible
construction of different overlapping Schwarzmethods. The FROSch implementation
of the GDSW preconditioner is significantly faster than the previous one.
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