
Parallel solver for H(div) problems
using hybridization and AMG

Chak S. Lee1 and Panayot S. Vassilevski2

1 Introduction

This paper is concerned with the H(div) bilinear form acting on vector func-
tions u, v:

a(u,v) =

∫

Ω

α∇ · u∇ · v + β u · v dx. (1)

Here α, β ∈ L∞(Ω) are some positive heterogeneous coefficients, and Ω is a
simply-connected polygonal domain in Rd, d = 2, 3. Discrete problems asso-
ciated with a(·, ·) arise in many applications, such as first order least squares
formulation of second order elliptic problems (Cai et al. [1994]), precondi-
tioning of mixed finite element methods (Brezzi and Fortin [1991]), Reissner-
Mindlin plates (Arnold et al. [1997]) and the Brinkman equations (Vassilevski
and Villa [2013]). Let A be the linear system obtained from discretization of
a(·, ·) by some H(div)-conforming finite elements of arbitrary order on a gen-
eral unstructured mesh. Our goal is to design a scalable parallel solver for
A.

It is well known that finding efficient iterative solvers for A is not trivial
because of the “near-null space” of A. The currently available scalable par-
allel solvers include the auxiliary space divergence solver (ADS) (Kolev and
Vassilevski [2012]) in the hypre library [www.llnl.gov/CASC/hypre/] and
PCBDDC (Zampini [2016]) in the PETSc library. The former relies on the
regular HX-decomposition forH(div) functions proposed in Hiptmair and Xu
[2007]. The setup of ADS is quite involved and requires additional input from
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the user, namely, some discrete gradient and discrete curl operators. On the
other hand, PCBDDC is based on the Balancing Domain Decomposition by
Constraints algorithm (Dohrmann [2003]). Its construction requires that the
local discrete systems are assembled at subdomain level. To accommodate
high contrast and jumps in the coefficients, the primal space in PCBDDC
is adaptively enriched by solving some generalized eigenvalue problems, see
Zampini and Keyes [2016].

In this paper, we propose an alternative way to solve systems with A.
Our approach is based on the traditional hybridization technique used in the
mixed finite element method (Brezzi and Fortin [1991]), thus reducing the
problem to a smaller problem for the respective Lagrange multipliers that
are involved in the hybridization. The reduced problem is symmetric posi-
tive definite, and as is well-known, is H1-equivalent. Thus, in principle, one
may apply any scalable AMG solver that is suitable for H1 problems. Unlike
ADS, the hybridization approach does not require additional specialized in-
formation (such as discrete gradient and discrete curl) from the user. Instead,
it requires that the original problem is given in unassembled element-based
form.

One main issue that has to be addressed is the choice of the basis of
the Lagrange multiplier space. In general, the reduced problem contains the
constant function in its near null-space. However, if the basis for the Lagrange
multipliers is not properly scaled (i.e., does not provide partition of unity),
the coefficient vector of the constant functions is not a constant multiple of
the vector of ones. The latter is a main assumption in the design of AMG
for H1-equivalent problems. We resolve this problem in an algebraic way by
constructing a diagonal matrix which we use to rescale the reduced system
such that the constant vector is the near-null space of the rescaled matrix,
so that the respective AMG is correctly designed.

The proposed hybridization with diagonal rescaling is implemented in a
parallel code and its scalability is tested in comparison with the state-of-
the-art ADS solver. The results demonstrate that the new solver provides a
competitive alternative to ADS; it outperforms ADS very clearly for higher
order elements.

Although in this paper we focus on finite element problems discretized
by Raviart-Thomas elements, the proposed approach can be applied to
otherH(div) conforming discretizations like Brezzi-Douglas-Marini elements,
Arnold-Boffi-Falk elements (Arnold et al. [2005]), or numerically upscaled
problems (Chung et al. [2015], Kalchev et al. [2016]).

The rest of the paper is organized as follows. In Sect. 2, we give a detailed
description of the hybridization technique. The properties of the hybridized
system are discussed in Sect. 3. After that, we present in Sect. 4 several
challenging numerical examples to illustrate the performance of the method
comparing it with ADS.
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2 Hybridization

We consider the variational problem associated with the bilinear form (1):
find u ∈ H0(div;Ω) such that

a(u,v) = (f ,v), ∀ v ∈ H0(div;Ω). (2)

Here, f is a given function in
(
L2(Ω)

)d
and (·, ·) is the usual L2 inner product

in Ω. Our following discussion is based on discretization of the variational
problem (2) by Raviart-Thomas elements of arbitrary order. We note that
other H(div)-conforming finite elements can also be considered. Let Th be a
general unstructured mesh on Ω. The space of Raviart-Thomas elements of
order k ≥ 0 on Th will be denoted by RTk. For instance, if Th is a simplicial
mesh, then RTk is defined to be

RTk =
{
vh ∈ H0(div;Ω)

∣∣ vh|τ ∈
(
Pk(τ)

)d
+ xPk(τ) ∀τ ∈ Th

}
,

where Pk(τ) denotes the set of polynomials of degree at most k on τ . For
definitions of RTk on rectangular/cubic meshes, see for example Brezzi and
Fortin [1991]. Discretization of (2) by RTk elements results in a linear system
of equations

Au = f. (3)

We are going to formulate an equivalent problem such that the modified
problem can be solved more efficiently. We note that RTk basis functions are
either associated with degrees of freedom (dofs) in the interior of elements, on
boundary faces, or interior faces of a conforming finite element mesh. Those
associated with dofs in the interior of elements or on boundary faces are
supported in only one element, while those associated with dofs on interior
faces are supported in two elements. In hybridization, the RTk basis functions
that are associated with dofs on interior faces are split into two pieces, each
supported in one and only one element. In practice, the splitting can be done
by making use of the element-to-dofs relation table to identify the shared
dofs between any pair of neighboring elements. This relation table can be
constructed during the discretization. The space of Raviart-Thomas element
after the splitting will be denoted by R̂T k. If we discretize a(·, ·) with the

basis functions in R̂T k, the resulting system will have a block diagonal matrix
Â. Next, we need to enforce the continuity of the split basis functions in some
way such that the solution of the modified system coincides with the original
problem. Suppose a RTk basis function φ is split into φ̂1 and φ̂2. The simplest
way is to use Lagrange multiplier space to make the coefficient vectors of the
test functions from both sides of an interior interface to be the same. If we
set such constraints for all the split basis functions, we obtain a constraint
matrix C.
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Remark 1. There are other ways to enforce continuity of R̂T k. For example,
when constructing the constraint matrix C, one can also use the normal traces
λ of the original RTk basis functions as Lagrange multipliers; see Cockburn
and Gopalakrishnan [2004].

The modified problem after introducing the Lagrange multipliers takes the
saddle–point form [

Â CT

C 0

] [
û
λ

]
=

[
f̂
0

]
. (4)

Here, û is the coefficient vector of ûh. The saddle point problem (4) can be
reduced to

Sλ = g, (5)

where S = CÂ−1CT and g = CÂ−1f̂ . The Schur complement S and the new
right-hand side g can be explicitly formed very efficiently because Â is block
diagonal. In fact, the inversion of Â is embarrassingly parallel. Here, each
local block of Â is invertible, so Â−1 is well-defined. We will show in the next
section that S is actually an s.p.d. system of the Lagrange multipliers, and
that it can be solved efficiently by existing parallel linear solvers. After solving
for λ, û can be computed by back substitution û = Â−1(f̂ −CTλ). Note that

the back substitution involves only an action of Â−1 (already available in
the computation of S) and some matrix-vector multiplications, which are
inexpensive (local) and scalable computations.

3 Discussion

The hybridization approach described in the previous section can be summa-
rized as follows:

1. Split the RTk basis to obtain Â and f̂ .
2. Compute Â−1 and form S = CÂ−1CT and g = CÂ−1f̂ .
3. Solve the system Sλ = g.
4. Recover û by back substitution.

As explained in Sect. 2, step 2 and 4 are scalable (inexpensive local) compu-
tations. In contrast, step 3 involves the main computational cost. Thus, it is
important that we can solve S efficiently. In this section, we describe some
properties of S. First, we show that S is related to some hybridized mixed
discretization of the second order differential operator −∇ · (β−1∇) + α−1I
(acting on scalar functions). We note that the differential problem associated
with (2) is

−∇(α∇ · u) + βu = f (6)

with homogeneous Dirichlet boundary condition u·n = 0. The latter operator
acts on vector-functions. We now make the following connection between

Parallel solver for H(div) problems using hybridization and AMG 65



these two operators. If we introduce an additional variable p = α∇ · u, then
(6) becomes the following first order system (for u and p)

βu−∇p = f ,

∇ · u− α−1p = 0.
(7)

It is noteworthy to note that the structure of (7) is the same as the
mixed formulation of the differential operator −∇ · (β−1∇) + α−1I. So we
can apply a hybridized mixed discretization (Cockburn and Gopalakrishnan
[2004, 2005]) for −∇ · (β−1∇) + α−1I to discretize (7). To apply the hy-
bridized mixed discretization, we note that the weak form of (7) is to find
(u, p) ∈ H0(div;Ω)× L2(Ω) such that

(βu,v) + (p,∇ · v) = (f ,v) ∀ v ∈ H0(div;Ω)

(∇ · u, q)− (α−1p, q) = 0 ∀ q ∈ L2(Ω).
(8)

Let W k
h ⊂ L2(Ω) be a space of piecewise polynomials such that RTk and

W k
h form a stable pair for the mixed discretization of (8). For instance, for

simplicial meshes, we can take

W k
h =

{
q ∈ L2(Ω)

∣∣∣ q|τ ∈ Pk(τ) ∀τ ∈ Th
}
.

If (8) is discretized by the pair R̂T k-W
k
h and the continuity of R̂T k is enforced

by the constraint matrix C as described in Sect. 2, we get a 3 by 3 block
system of equations of the form



M̂ B̂T CT

B̂ −W 0
C 0 0





û
p
λ


 =



f̂
0
0


 . (9)

As M̂ and W are weighted L2 mass matrices of the spaces R̂T k and W k
h

respectively, they are invertible. Hence, the 2 by 2 block matrix

[
M̂ B̂T

B̂ −W

]
is

invertible, and (9) can be reduced to

[
C 0

]
[
M̂ B̂T

B̂ −W

]−1 [
CT

0

]
λ =

[
C 0

]
[
M̂ B̂T

B̂ −W

]−1 [
f̂
0

]
. (10)

Since the (1, 1) block of

[
M̂ B̂T

B̂ −W

]−1

can be written as (M̂ + B̂TW−1B̂)−1

and Â = M̂ + B̂TW−1B̂, the reduced problem (10) is in fact identical to
(5). Therefore, the Schur complement S in (5) can be characterized by the

66 Chak Shing Lee, Panayot S. Vassilevski



hybridized mixed discretization for the differential operator −∇ · (β−1∇) +
α−1I.

Remark 2. Actually the hybridized mixed discretization for −∇ · (β−1∇) +
α−1I in Cockburn and Gopalakrishnan [2004, 2005] gives rise to the reduced

system S̃ for the Lagrange multiplier λ where

S̃ = C
(
M̂−1 − M̂−1B̂T

(
B̂M̂−1B̂T +W

)−1
B̂M̂−1

)
CT .

However, since W is invertible, an application of the Sherman-Morrison-
Woodbury formula implies that S̃ = S.

In Cockburn and Gopalakrishnan [2005], the authors proved that S is spec-
trally equivalent to the norm |||·||| on the space of Lagrange multipliers defined
as

|||λ|||2 =
∑

τ∈Th

1

|∂τ | ‖λ−mτ (λ)‖2∂τ

where mτ (λ) =
1

|∂τ |
∫
∂τ

λ ds. More precisely, there are constants C1 and C2,

depending only on the approximation order k, the coefficients α, β of the op-
erator, and the shape regularity of Th such that C1|||λ|||2 ≤ λTSλ ≤ C2|||λ|||2
for all λ. Consequently, S is symmetric positive definite. Moreover, this shows
that the near-null space of S is spanned by the constant functions, which is
the main assumption to successfully apply solvers of AMG type. When solv-
ing with S, we opt for the parallel algebraic multigrid solver BoomerAMG
(Henson and Yang [2002]) from the hypre library.

Depending on the choice of basis for the Lagrange multipliers space, the
coefficient vector of a constant function is not necessarily a constant vector
and the latter affects adversely the performance of classical AMG methods
such as BoomerAMG from hypre. To resolve this issue, we chose to rescale S
by a diagonal matrix D such that the constant vector is now in the near-null
space of DTSD. To achieve this, we solve the homogeneous problem Sd = 0
by applying a few smoothing steps to a random initial guess. In our numerical
experiments to be presented in the next section, we use 5 conjugate gradient
(CG) iterations preconditioned by the Jacobi smoother in the computation of
d, which is fairly inexpensive. Once d is computed, we set Dii = di (the i-th
entry of d). Noticing that D1 = d, so 1 is in the near-null space of DTSD.
We can then apply CG preconditioned by BoomerAMG constructed from
DTSD to efficiently solve the system

(DTSD)λD = DT g.

Lastly, the original Lagrange multiplier λ is recovered simply by setting λ =
DλD.

Another useful feature of S is that its size is less than or equal to the size
of the original matrix A. This is because there is a one-to-one correspondence
between Lagrange multipliers and Raviart-Thomas basis functions associated
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with interior faces. For higher order Raviart-Thomas elements, a portion of
the basis functions are associated with interior of elements. These basis func-
tions are supported in one element only, so they do not need Lagrange mul-
tipliers to enforce their continuity. Hence, for higher order approximations,
methods for solving with S are likely to be more efficient and faster than solv-
ing with A (using state-of-the-art solvers such as ADS) which is confirmed
by our experiments.

4 Numerical Examples

In this section, we present some numerical results regarding the performance
of our hybridization AMG solver. The numerical results are generated us-
ing MFEM [mfem.org], a scalable C++ library for finite element methods
developed in the Lawrence Livermore National Laboratory (LLNL). All the
experiments are performed on the cluster Sierra at LLNL. Sierra has a total
of 1944 nodes (Intel Xeon EP X5660 clocked at 2.80 GHz), which are con-
nected by InfiniBand QDR. Each node has 12 cores and equipped with 24
GB of memory.

In the solution process, the hybridized system with S is rescaled by the
diagonal matrix D as described in the previous section. The rescaled system
DTSD is then solved by the CG method preconditioned with BoomerAMG
(constructed from DTSD) from the hypre library. As one of our goals is
to compare the hybridization AMG solver with ADS, we present also the
performance of ADS in all the examples. In order to have fair comparisons,
the time to solution for the hybridization AMG solver includes the formation
time of the Schur complement S, the computation time to construct the
rescaling matrix D, the solve time for the problem with the modified matrix
DTSD by CG preconditioned by BoomerAMG, and the recovery time of the
original unknown u. The time to solution for ADS is simply the solve time
for the original problem with A by the CG preconditioned by ADS. For the
tables in the present section, #proc refers to the number of processors, while
#iter refers to the number of PCG iterations.

4.1 Weak Scaling

We first test the weak scaling of the hybridization AMG solver. The problem
setting is as follows. We solve problem (3) obtained by RTk discretization on
uniform tetrahedral mesh in 3D. Starting from some initial tetrahedral mesh,
we refine the mesh uniformly. The problem size increases by about 8 times
after one such refinement. At the same time, the number of processors for
solving the refined problem is increased 8 times so that the problem size per
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processor is kept roughly the same. Both the lowest order Raviart-Thomas

Fig. 1 Initial mesh for the RT2 weak scaling test case. Blue region indicates Ωi

elements RT0 and a higher order elements, RT2, are considered. We solve
a heterogeneous coefficient problem on the unit cube, i.e. Ω = [0, 1]3. The
boundary conditions are u · n = 0 on ∂Ω, and the source function f is the
constant vector [1, 1, 1]T . Let Ωi = [ 14 ,

1
2 ]

3 ∪ [ 12 ,
3
4 ]

3. We consider β being

constant 1 throughout the domain, whereas α =

{
1 in Ω\Ωi

10p in Ωi
and we

choose p = -4, 0, or 4. For RT2 test case, we first partition Ω into 8 x 8 x
4 parallelepipeds. The initial tetrahedral mesh in this case is then obtained
by subdividing each parallelepiped into tetrahedrons, see Fig. 1. The initial
mesh of the RT0 test case is obtained by refining the initial mesh of the RT2

test case 3 times. The PCG iterations are stopped when the l2 norm of the
residual is reduced by a factor of 1010. The time to solution (in seconds) of
both the hybridization AMG and ADS for the RT0 case are shown in Table 1.
Additionally, we also report the number of PCG iterations in the brackets.
We see that the number of iterations of the hybridization solver are very

Table 1 Time to solution (in seconds) in the weak scaling test: RT0 on tetrahedral meshes,

the corresponding number of PCG iterations are the reported in the brackets

#proc Problem size p = -4 p = 0 p = 4

Hybridization-BoomerAMG-CG

3 200,704 0.97 (24) 0.96 (21) 0.93 (21)

24 1,589,248 1.15 (24) 1.15 (23) 1.16 (23)
192 12,648,448 1.45 (27) 1.48 (25) 1.43 (24)
1,536 100,925,440 3.31 (29) 3.03 (28) 3.03 (28)

ADS-CG

3 200,704 2.68 (21) 1.74 (10) 1.79 (11)
24 1,589,248 4.04 (25) 3.53 (13) 3.54 (13)
192 12,648,448 7.10 (27) 5.73 (15) 5.61 (14)

1,536 100,925,440 8.30 (28) 6.28 (15) 6.51 (15)

stable against problem size and the heterogeneity of α. The average time to
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solution of the hybridization approach is about 2 times faster than that of
ADS. The solution time difference between the two solvers is more significant
in the high order discretization case. This is due to the fact that size of the
hybridized system S is much smaller than the size of the original system A.
Indeed, in the case of RT2, the average time to solution of the hybridization
approach is about 8 times faster than that of ADS, see Table 2. In Fig. 2,
we plot the solution time of both solvers where p = 4 in the definition of α.
We can see that the hybridization solver has promising weak scaling over a
range of nearly three decades.

Table 2 Time to solution (in seconds) in the weak scaling test: RT2 on tetrahedral meshes,

the corresponding number of PCG iterations are the reported in the brackets

#proc Problem size p = -4 p = 0 p = 4

Hybridization-BoomerAMG-CG

3 38,400 0.30 (15) 0.31 (16) 0.31 (16)

24 301,056 0.48 (18) 0.50 (21) 0.48 (20)

192 2,383,872 0.75 (28) 0.89 (29) 0.77 (29)
1,536 18,972,672 1.97 (44) 1.95 (47) 2.10 (47)

ADS-CG

3 38,400 4.85 (23) 3.55 (13) 3.80 (14)
24 301,056 7.24 (29) 5.47 (18) 5.73 (20)

192 2,383,872 11.56 (37) 8.89 (25) 9.56 (28)

1,536 18,972,672 24.28 (53) 16.51 (37) 16.37 (39)

4.2 Strong Scaling

In the second example, we investigate the strong scaling of the hybridization
AMG solver. The problem considered in this section is the crooked pipe
problem, see Kolev and Vassilevski [2012] for a detailed description of the
problem. The mesh for this problem is depicted in Fig. 3. The coefficient α
and β are piecewise constants. More precisely, (α, β) = (1.641, 0.2) in the
red region, and (α, β) = (0.00188, 2000) in the blue region. The difficulties
of this problem are the large jumps of coefficients and the highly stretched
elements in the mesh (see Fig. 3). For this test, the problem is discretized by
RT1. The size of A is 2,805,520, and we solve the problem using 4, 8, 16 ,32
and 64 processors. The PCG iterations are stopped when the l2 norm of the
residual is reduced by a factor of 1014. The number of PCG iterations and
time to solution are reported in Table 3, and we plot the speedup in Fig. 4.
When measuring the speedup, solution times are corrected by the number of
iterations.

Both solvers exhibit good strong scaling. We note that in this example, the
solution time of the hybridization AMG solver is much smaller than the ADS
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(a) RT0

(b) RT2

Fig. 2 Weak scaling comparisons between the hybridization AMG solver (red dotted line)

and ADS (blue solid line)

Fig. 3 The mesh for the Crooked Pipe problem (left). A dense layer of highly stretched

elements (right) has been added to the neighborhood of the material interface in the

exterior subdomain in order to resolve the physical diffusion

solver. The average solve time of the hybridization AMG solver is about 10
times smaller than that of ADS. In particular, the hybridization AMG solver
with 4 processors is still 2 times faster than ADS with 64 processors. The
difference in the computation time for this example is highly noticeable.

Lastly, we report the time spent on different components of the hybridiza-
tion approach in Table 4. We observe that except for solving with S (i.e. setup
and PCG solve), the other components scale fairly well. Also, as we point out
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Table 3 Strong scaling test, original problem size: 2,805,520

Hybridization-BoomerAMG-CG ADS-CG

#proc #iter Time to solution #iter Time to solution

4 25 23.46 32 508.66

8 31 14.21 32 251.37

16 28 6.83 33 130.26
32 28 3.98 34 73.47

64 31 2.92 34 54.58

in Sect. 3, solving with S is the most time consuming part of the hybridiza-
tion AMG code. We remark that during the formation of S, we stored the
inverses of local blocks of Â. So when we recover u by back substitution, only
matrix multiplication is needed. Hence, the recovery of u is extremely cheap
and scalable.

Table 4 Timing of each component of the new solver

#proc Formation of S Computation of D Setup PCG solve Recovery of u

4 7.55 0.22 3.87 11.72 0.092

8 3.95 0.11 2.29 7.81 0.046
16 1.84 0.057 1.4 3.52 0.022

32 1.11 0.034 0.83 2.01 0.012
64 0.68 0.027 0.52 1.7 0.006

Fig. 4 Strong scaling comparison between the hybridization AMG solver (red dotted line)

and ADS (blue solid line). Black dotted line indicates perfect scaling
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