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1 Introduction 10

Far field simulations of underground nuclear waste disposal involve a number of 11

challenges for numerical simulations: widely differing lengths and time-scales, 12

highly variable coefficients and stringent accuracy requirements. In the site under 13

consideration by the French Agency for Nuclear Waste Management (ANDRA), the 14

repository would be located in a highly impermeable geological layer, whereas the 15

layers just above and below have very different physical properties (see [1]). It is 16

then natural to use different time steps in the various layers, so as to match the time 17

step with the physics. To do this, we propose to adapt a global in time domain de- 18

composition method, based on Schwarz waveform relaxation algorithms, to prob- 19

lems in heterogeneous media. This method has been introduced and analyzed for 20

linear advection-reaction-diffusion problems with continuous coefficients [2, 6] and 21

extended to discontinuous coefficients [3, 4], with asymptotically optimized Robin 22

transmission conditions in [3]. The method is extended to higher dimension in [4] 23

with convergence results and error estimates for rectangular or strip subdomains. 24

This method is extended to problems with discontinuous porosity in [5]. A new 25

aproach is proposed to determine optimized transmission conditions for domains 26

with highly variable lengths. In this paper we analyse this approach in 1d. 27

Our model problem for the radionuclide transport is the one dimensional advection-28

diffusion-reaction equation 29

ϕ∂t u+ a∂xu− ∂x(ν∂xu)+ bu = f , on R× (0,T),
u(0,x) = u0(x), x ∈ R.

(1)

We focus on a model problem to show the effect of subdomains with widely differing 30

sizes. We consider a decomposition in Ω1 = (−∞,0), Ω2 = (0,L), Ω3 = (L,∞) with 31

L << 1. The reaction coefficient b is taken constant and the coefficients a, ν , and ϕ 32

are assumed constant on each Ωk, but may be discontinuous at x = 0 and x = L, 33
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ϕ = ϕk, a = ak, ν = νk, x ∈Ωk.

We introduce the notations 34

Lkv := ϕk∂tv+ ak∂xv− ∂x(νk∂xv)+ bv, on Ωk× (0,T),
ϕϕϕ := (ϕ1,ϕ2,ϕ3), aaa := (a1,a2,a3), ννν := (ν1,ν2,ν3).

Problem (1) is equivalent to solving problems in subdomains Ωk 35

Lkuk = f , on Ωk× (0,T ),
uk(0,x) = u0(x), x ∈Ωk.

with coupling conditions on the interface Γk,� between two neighboring subdomains 36

Ωk and Ω� given by 37

uk = u�,
(
νk∂x−ak

)
uk =

(
ν�∂x−a�

)
u�, on Γk,�× (0,T ). (2)

2 Domain Decomposition Algorithm 38

A simple algorithm based on relaxation of the coupling conditions (2) does not con- 39

verge in general (see [7]). Following previous works [2–4], we introduce the Schwarz 40

waveform relaxation algorithm 41

Lkun
k = f , on Ωk× (0,T ),

un
k(0,x) = u0(x), x ∈Ωk,(

νk∂x−ak
)

un
k +Sk,�un

k =
(
ν�∂x−a�

)
un−1
� +Sk,�u

n−1
� , on Γk,�× (0,T ),

(3)

where Sk,� are linear operators in time and space, defined by 42

Sk,�ψ = p̄k,�ψ + q̄k,�∂tψ .

The case q̄k,� = 0 corresponds to Robin transmission conditions, while the case 43

q̄k,� �= 0 corresponds to first order transmission conditions. The well-posedness and 44

convergence have been analyzed for constant porosity in [3] and in higher dimension 45

in [4]. The transmission conditions in (3) imply the coupling conditions (2) at con- 46

vergence, and lead at the same time to an efficient algorithm, for suitable parameters 47

p̄k,� and q̄k,� obtained from an optimization of the convergence factor. 48

Similarly, Sk,� are approximations of the best operators related to transparent 49

boundary operators. They can be found using Fourier analysis in the two half-spaces 50

case. This analysis has been done for discontinuous coefficients [3], and in higher 51

dimension and continuous coefficients [2]. The min-max problem has been analysed 52

in one dimension in [3] with asymptotical Robin parameters. 53

In the field of nuclear waste computations, domains of meter scale are embedded 54

in domains of kilometer scale. The previous optimization of the convergence factor 55

does not take into account the high variability of the domains lengths. Following 56

[5], we determine optimized transmission conditions through the minimization of a 57

convergence factor that takes into account this variability. 58
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2.1 Optimal Transmission Conditions 59

In order to determine the optimal transmission operators Sk,�, we compute the con- 60

vergence factor of the algorithm. Since the problem is linear, we consider the algo- 61

rithm (3) on the error (i.e. with f = 0 and u0 = 0). In order to use a Fourier transform 62

in time, we assume that all functions are extended by 0 for t < 0. 63

Let en
k = un

k−u be the error in Ωk at iteration k. The operators Sk,� are related to 64

their symbols σk,�(ω) by 65

Sk,�u(t) =
1

2π

∫
σk,�(ω)û(ω)eiωt dω .

The Fourier transforms ên
k in time of en

k are solutions of the ordinary differential 66

equation in the x variable 67

−νk∂ 2
xxê+ ak∂xê+(iϕkω + b)ê = 0.

The characteristic roots are 68

r±(ak,νk,ϕk,b,ω) =
ak±
√

dk

2νk
, dk = a2

k + 4νk(iϕkω + b). (4)

Since ℜr+ > 0, ℜr− < 0, and since we look for solutions which do not increase 69

exponentially in |x|, we obtain 70

ên
1(x,ω) = αn

1 (ω)er+(a1,ν1,ϕ1,b,ω)x, ên
3(x,ω) = αn

3 (ω)er−(a3,ν3,ϕ3,b,ω)x,

ên
2(x,ω) = αn

2 (ω)er+(a2,ν2,ϕ2,b,ω)x +β n
2 (ω)er−(a2,ν2,ϕ2,b,ω)x.

(5)

We set ξ n = (αn
1 ,α

n
2 ,β

n
2 ,α

n
3 )

t , and r±k = r±(ak,νk,ϕk,b,ω). We define the variables 71

sk = sk(ω ,L), 1≤ k≤ 8, by 72

s1 =
ν2r−2 −σ1,2

ν1r−1 −σ1,2
, s2 =

ν2r+2 −σ1,2

ν1r−1 −σ1,2
, s3 =

ν2r+2 −σ2,3

ν2r−2 −σ2,3
· e(r−2 −r+2 )L,

s5 =
ν2r−2 +σ2,1

ν2r+2 +σ2,1
, s7 =

ν2r−2 +σ3,2

ν3r+3 +σ3,2
e(r

+
2 −r−3 )L, s8 =

ν2r+2 +σ3,2

ν3r+3 +σ3,2
e(r
−
2 −r−3 )L,

s4 =
ν1r−1 +σ2,1

ν2r+2 +σ2,1
· 1

D , s6 =
ν3r+3 −σ2,3

ν2r−2 −σ2,3
· e(r

−
3 −r+2 )L

D , with D = s3s5−1.

We insert (5) into the transmission conditions in (3), and obtain for n≥ 2, 73

ξ n = Mξ n−1,

where the matrix M = M(ω ,L) is defined by 74

M =

⎛
⎜⎜⎝

0 s1 s2 0
s3s4 0 0 −s6

−s4 0 0 s5s6

0 s7 s8 0

⎞
⎟⎟⎠ .

The convergence factor ρ(ω ,L) for each ω ∈ R is the spectral radius of M. 75
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Remark 1. The choice for the symbols σk,� 76

σ1,2 = ν2r+2 , σ2,1 =−ν1r−1 , σ2,3 = ν3r+3 , σ3,2 =−ν2r−2 , (6)

leads to M2 = 0 and thus to optimal convergence in three iterations. 77

Proposition 1. The convergence factor is given by 78

ρ(ω ,L) =
√

max(|λ−|, |λ+|),
where λ± = λ±(ω ,L) is defined by 79

λ± =
α +β ±√(α −β )2 + 4γζ

2
,

with 80

α = s1s3s4− s2s4, β =−s6s7 + s5s6s8, γ = s3s4s7− s4s8, ζ =−s1s6 + s2s5s6. 81

This follows from the computation of the roots of the characteristic polynomial of 82

M, which is biquadratic. The corresponding operators to (6) are non-local in time. In 83

the next subsection, we therefore approximate the optimal operators by local ones. 84

2.2 Local Transmission Conditions 85

We approximate the optimal choice σk,� in (6) by polynomials in ω : 86

σ app
1,2 =

p1,2 + a2

2
+

q1,2

2
iω , σ app

2,1 =
p2,1−a1

2
+

q2,1

2
iω ,

σ app
2,3 =

p2,3 + a3

2
+

q2,3

2
iω , σ app

3,2 =
p3,2−a2

2
+

q3,2

2
iω .

In order to simplify the min-max problem, we will consider the following cases for 87

the choice of pk,� and qk,�: 88

1. (Robin) pk,� = p, qk,� = 0, 89

2. (Zeroth order) p1,2 = p3,2 = p1, p2,1 = p2,3 = p2, qk,� = 0, 90

3. (First order) pk,� = p, qk,� = q, 91

4. (First order scaled) pk,� = p, q1,2 = ϕ2q, q2,1 = ϕ1q, q2,3 = ϕ3q, q3,2 = ϕ2q. 92

Then, the parameters are chosen in order to minimize the convergence factor, i.e. we 93

solve, for ppp = p in case 1, ppp = (p1, p2) in case 2, and ppp = (p,q) in cases 3 and 4, the 94

min-max problem 95

δm(L) = min
ppp

(
max

ω0≤ω≤ωmax
ρ(ω ,ppp,ϕϕϕ ,aaa,ννν ,b,L)

)
, (7)

where ρ is the spectral radius of M, in which we have replaced σk,� by σ app
k,� , and m 96

is the order of the approximation. In numerical computations, the frequencies can be 97

restricted to ωmax =
π
Δ t , where Δ t is the time step, and ω0 =

π
T . 98
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Theorem 1. We suppose that ak = a, ϕk = ϕ and νk = ν , 1 ≤ k ≤ 3, thus dk = d in 99

(4). Let us consider the Robin case (ppp = p) and the first order case (ppp= (p,q)). Then 100

the convergence factor reduces to 101

ρ(ω ,ppp,ϕ ,a,ν,b,L) =

√√√√
∣∣∣∣∣
σ −√d

σ +
√

d

∣∣∣∣∣max

(∣∣∣∣σ − μ
σ + μ

∣∣∣∣ ,
∣∣∣∣σ −η
σ +η

∣∣∣∣
)

with 102

μ =
√

d

(
1+ e−

√
d

2ν L

1− e−
√

d
2ν L

)
, η =

√
d

μ
,

and with σ = p in the Robin case, and σ = p+qiω in the first order case. Let L > 0 103

given. Let δ0(L) (resp. δ1(L) ) be the solution of (7) for the Robin case (resp. the first 104

order case). For m = 0 and m = 1, we have |δm(L)|< 1. 105

3 Numerical Results 106

We use the DG-OSWR method in [4] based on a discontinuous Galerkin method in 107

time, with P1 finite elements in space in each subdomain. We present an example 108

inspired from nuclear waste simulations, with discontinuous coefficients, and dif- 109

ferent time and space steps in the subdomains Ω2 = (0.4954,0.5047) (repository), 110

Ω1 = (0,0.4954) and Ω3 = (0.5047,1) (host rock). The parameters for the three 111

subdomains are shown in Table 1. The final time is T = 0.04.

ϕ ν a b Δx Δ t
Ω1∪Ω3 0.06 0.06 1 0 510−3 T (510−3)

Ω2 0.1 1 1 0 510−4 T (110−3)

Table 1. Physical and numerical parameters

112
Let ppp�3 (resp. ppp�2) be the parameters derived from a numerical minimization of the 113

three domains convergence factor in (7) (resp. from the two half-spaces convergence 114

factor in [3]). Figure 1 shows ρ(ω ,p�3p�3p�3,L) (solid line) and ρ(ω ,p�2p�2p�2,L) (dashed line) 115

versus ω for Δ t = T (5 10−3). We observe that the solution of (7) is characterized 116

by an equioscillation property (at the star marks), as in the two half-spaces case (see 117

[2]). Moreover, for first order transmission conditions, we see that a scaling with 118

the porosity is important only when the parameters are computed from the two half- 119

spaces analysis. 120

On Fig. 2 we show the error after 20 iterations when running the algorithm on the 121

discretized problem, with u0 = f = 0 and random initial guess on the interfaces, for 122

various values of the Robin parameter p (left) and the zeroth order parameters p1, p2 123

(right) (in that case, the values obtain with the two half-spaces analysis is not in the 124

range values of the figure). 125
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Fig. 1. Convergence factor ρ(ω, ppp∗3,L) (solid line) and ρ(ω, ppp∗2,L) (dashed line) versus ω: Top
left: Robin, top right: zeroth order, left bottom: first order, right bottom: first order scaled
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Fig. 2. Error after 20 iterations: Left: for various values of the Robin parameter p (the lower
left star marks p�3 whereas the upper right circle shows p�2), Right: the level curves for various
values of the zeroth order parameters p1, p2 (the star marks the parameter ppp�3)
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Fig. 3. Evolution of the monodomain solution (solid line) and the OSWR solution at iteration
4 (circle line): at t = 0.001 (left), t = T = 0.04 (right)
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Fig. 4. Asymptotic behavior as the mesh is refined: on the left R(Δ t) and on the right where
Δ t = O(Δx), the rate for the optimized Schwarz waveform relaxation algorithm with opti-
mized first order (scaled) transmission conditions
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On Fig. 3, the solution, with first order (scaled) conditions, at iteration 4 is shown 126

for an initial condition equal to 1 in Ω2 and 0 elsewhere. 127

Figure 4 shows on the left R(Δ t) = 1−maxπ/T≤ω≤π/Δ t ρ(ω ,ppp�3,L)) versus Δ t,AQ1 128

i.e. the convergence factor behaves like 1−O(Δ t)1/16, with first order (scaled) opti- 129

mized transmission conditions. On the right, we run the OSWR algorithm until the 130

error becomes smaller than 10−11, and count the number of iterations. We start with 131

Δ t = T/100 in each subdomain, and repeat this experiment dividing Δx and Δ t by 2 132

several times. We observe that the asymptotic result on the left predicts very well the 133

numerical behavior of the algorithm given on the right. 134
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