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1 Introduction 7

Various domain decomposition methods have been proposed for the Helmholtz equa- 8

tion, with the Optimized Schwarz Method (OSM) being one of them (see e.g. [7] 9

for a review of various domain decomposition methods, and [3] for the details of 10

OSM). In this paper, we focus on OSM, which is based on the idea of using approx- 11

imated half-space Dirichlet-to-Neumann (DtN) maps to improve the convergence of 12

the Schwarz methods; current version of the OSM is based on polynomial approx- 13

imation of the half-space DtN map. See [8] for a review of various approaches to 14

approximating the half-space DtN map (more commonly referred to as Absorbing 15

Boundary Conditions (ABCs)). 16

There are two approximations in the OSM that affect its convergence rate – the 17

first being the approximation of the rest of the domain as unbounded and the second 18

being the approximation of the half-space stiffness (square-root operator) as a poly- 19

nomial. In contrast with the polynomial approximation used in OSM, we utilize the 20

method of Perfectly Matched Discrete Layers (PMDL), which has close links to the 21

well-known Perfectly Matched Layers (PML) (see [1]) and the rational approxima- 22

tion of the square-root operator. The resulting PMDL-Schwarz method is shown to 23

converge faster than the second-order OSM. The rest of the paper contains a brief 24

review of OSM and PMDL concepts, followed by an outline of the new PMDL- 25

Schwarz method and illustration of its effectiveness with the help of convergence 26

factor analysis and a numerical example. 27

Model Problem. We consider the governing equation, 28

−∂ 2û
∂x2 −

∂ 2û
∂y2 −ω2û = f̂ , (x,y) ∈ (−∞,∞)× [0,L], (1a)

û(·,0) = û(·,L) = 0 . (1b)

Applying Fourier Sine transform along the y direction, the above equation reduces 29

to a 1-D form: 30
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−∂ 2u
∂x2 − k2u = f , x ∈ (−∞,∞), (2)

where k =
√

ω2− k2
y , ky is the wavenumber along y and u, f are the Fourier sym- 31

bols corresponding to û, f̂ respectively. For simplicity, we shall use the above 1-D 32

equation to discuss the main ideas in this paper, but note that the proposed method is 33

applicable to more complex equations and geometries. Also, since the focus of this 34

paper is to improve the treatment of the transmission condition at an interface, it is 35

sufficient to consider the case of two subdomains. Thus the domain is decomposed 36

into two subdomains: Ω1 ≡ (−∞,0) and Ω2 ≡ (0,∞), with the interface at x = 0. 37

2 Optimized Schwarz Methods 38

Optimized Schwarz Method is a domain decomposition method that is a variant of 39

the Schwarz Alternating Method (see e.g. [7]). In the Schwarz Alternating Method, 40

the displacement and traction continuity across the artificial interface are enforced by 41

applying a mixed boundary condition of the form B(·)≡ ∂ (·)/∂n+Λ(·) where n is 42

the normal vector at the interface and the operator Λ is a parameter of the method. 43

The Schwarz iteration scheme for solving (2) is given by: 44

−∂ 2u j+1
1

∂x2 − k2u j+1
1 = f1 , x ∈Ω1 , −∂ 2u j+1

2

∂x2 − k2u j+1
2 = f2 , x ∈Ω2 , (3a)

B1u j+1
1 = B1u j

2, x = 0 , B2u j+1
2 = B2u j+1

1 , x = 0 , (3b)

B1(·)≡ ∂ (·)
∂n1

+Λ1(·) , B2(·)≡ ∂ (·)
∂n2

+Λ2(·) , (3c)

where the operators Λ1,2 are the parameters of the iteration that determine the con- 45

vergence rate. The problem now reduces to choosing the parameters that lead to 46

optimal convergence of the iteration scheme. The parameters are commonly chosen 47

to be scalars but they can be operators that are optimized for convergence [3]. The 48

dependence of the convergence on the choice of parameters is better understood by 49

looking at the convergence factor ρ , which is defined as 50

∣∣êi
j+1
∣∣= ρ

∣∣êi
j
∣∣ , (4)

where ê j
i = |u− u j

i | is the error in the solution in subdomain i at iteration j. Thus, 51

after one cycle of iteration, the error in solution reduces by ρ and the iterative scheme 52

converges to a solution as long as ρ < 1. 53

For the Schwarz method in (3), the convergence factor can be shown to be (see 54

for e.g. [3]) 55

ρ =

∣∣∣∣
(

Λ1−K2

Λ1 +K1

)(
Λ2−K1

Λ2 +K2

)∣∣∣∣ , (5)

where K1 and K2 are the DtN maps of the subdomains Ω1 and Ω2 respectively. 56

It is clear from (5) that the iterative scheme does not converge (because ρ = 1) for 57
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a pure Neumann (Λi = 0) or Dirichlet (Λi = ∞) interface condition. Also, if Λ1 = 58

K2 or Λ2 = K1, then ρ = 0 and the Schwarz iterative scheme converges in two 59

iterations, i.e., the parameters are optimal. However, DtN maps are known only for 60

special cases and even then are usually non-local operators that are expensive to 61

compute accurately. Thus we look for local approximations to these DtN maps that 62

are accurate and computationally efficient. 63

Optimized Schwarz Methods [3] essentially approximate the DtN map of the sub- 64

domains by polynomial approximations of the DtN map of an unbounded domain, 65

e.g. the second-order OSM makes the approximation 66

K1 =−i
√

ω2− k2
y ≈ p+ qk2

y , (6)

where p, q are parameters that are found by minimizing the convergence factor over 67

the entire range of allowed vertical wavenumbers ky. Note that there are other variants 68

of OSM based on zeroth-order approximation; in this paper, we focus on the best 69

available OSM, namely the second-order OSM. 70

3 A Schwarz Method with Improved Convergence 71

It appears to us that OSM uses polynomial approximation for reasons of imple- 72

mentability. A better approximation would be to use higher order rational approx- 73

imations, which have been investigated extensively in the context of Absorbing 74

Boundary Conditions (ABCs); it is now possible to implement these resulting ABCs 75

and can also be used in the context of Schwarz methods. In this paper, we propose 76

the use of a rational approximation in a recent ABC called Perfectly Matched Dis- 77

crete Layers (formerly known as Continued Fraction ABCs – see [4]) instead of the 78

polynomial approximation in (6). 79

The rational approximation corresponding to PMDL is given by: 80

K1 =−i
√

ω2− k2
y ≈S pmdl

n , (7)

where 81

S pmdl
n = pn−

q2
n

pn +

⎛
⎜⎜⎜⎜⎝pn−1 +

q2
n−1

pn−1 +

(
pn−2−

q2
n−2

pn−2 +(. . . )

)

⎞
⎟⎟⎟⎟⎠

, (8)

pi =
1

4Li

(
4− k2L2

i

)

qi =
1

4Li

(−4− k2L2
i

)

⎫⎪⎪⎬
⎪⎪⎭

i = 1 . . .n . (9)
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where Li are the parameters that determine the accuracy of the approximation. 82

The error in the approximation (7) is typically analyzed through the so-called 83

reflection coefficient, which has been shown to be (for details, see [4]) 84

R =
n

∏
i=1

∣∣∣∣K1− pi

K1 + pi

∣∣∣∣
2

. (10)

If R = 0, then the approximation is exact, and the deviation from zero indicates mag- 85

nitude of error in the approximation; smaller the value of R, better the approximation. 86

So from (10) and (9), it is clear that the accuracy of proposed approximation hinges 87

on the choice of Li. 88

In general, Li are chosen to be complex or imaginary to better approximate the 89

DtN map for propagating wave modes and are chosen to be real when evanescent 90

modes are important. While the parameters Li can be optimized using the concepts 91

discussed in [5], in this paper we choose Li based on the OSM parameters (see 92

Sect. 4). 93

Implementation of PMDL. While the rational form of the PMDL approxima- 94

tion in (8) is useful for analysis, the following matrix form proves to be useful for 95

implementation: 96

⎡
⎢⎢⎢⎢⎢⎣

S pmdl
n ub

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

p1 q1 0 · · · 0
q1 p1 + p2 q2 0

0
. . .

. . .
. . . 0

... qn−1 pn−1 + pn qn

0 · · · 0 qn pn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ub

ua,1

ua,2
...

ua,n−1

⎤
⎥⎥⎥⎥⎥⎦
, (11)

where pi,qi are given by (9) and ua,i are auxiliary variables that are introduced to 97

facilitate the implementation and have no direct physical relevance to the problem. 98

The equivalence between (8) and (11) can be easily seen by eliminating the auxil- 99

iary dof ua,i from (11) to recover (8). The matrix form of PMDL enables an easy 100

implementation of the rational approximation as a simple tri-diagonal matrix. 101

PMDL, a link between Rational ABCs and Perfectly Matched Layers. While 102

the matrix form of the PMDL approximation in (11) is based on the rational approx- 103

imation in (8), it is intimately linked to impedance-preserving discretization of PML 104

proposed in [4]. Unlike PML, the impedance is preserved even after discretization 105

and thus the approximation is named perfectly matched discrete layers, PMDL. This 106

link is substantial in that it provides a way to derive and easily implement PMDL ap- 107

proximations for more complex cases such as corners [4] and anisotropic elasticity 108

[6]. 109

The ease of implementation of PMDL is in fact the impetus behind proposed 110

method. As implied by (10), the accuracy of approximation can be easily increased 111

by adding auxiliary variables, which is equivalent to adding lines of nodes parallel 112

to the interface. As will be shown in Sect. 4, addition of just one auxiliary variable, 113

which has minimal increase in computational cost per iteration, significantly reduces 114

the convergence factor and the number of iterations needed. 115
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Implementation of the PMDL-Schwarz method. The proposed 116

PMDL-Schwarz method is essentially the Schwarz Alternating method with the 117

operator Λ1 chosen to be the DtN map obtained using PMDL, i.e., Λ1 = S pmdl
n 118

where S pmdl
n is given by (11). Thus the interface condition in (3) for Ω1 can be 119

written as 120

∂
∂n1

(u j+1
1 −u j

2)+S pmdl
n (u j+1

1 −u j
2) = 0 . (12)

Substituting (11) in (12), we get the PMDL-Schwarz formulation as 121

⎡
⎢⎢⎢⎢⎢⎢⎣

∂u j+1
1

∂n1

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

p1 q1 0 · · · 0
q1 p1 + p2 q2 0

0
. . .

. . .
. . . 0

... qn−1 pn−1 + pn qn

0 · · · 0 qn pn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u j+1
1

ua,1

ua,2
...

ua,n−1

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

− ∂u j
2

∂n2
+ p1u j

2

q1u j
2

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(13)

Note that the formulation of the interface condition for Ω2 can be derived in an 122

identical manner and hence is not repeated here. 123

4 Comparison Between OSM and PMDL-Schwarz Methods 124

In this section, we compare the performance of OSM and PMDL-Schwarz method 125

both theoretically (using convergence factors) and in a numerical simulation involv- 126

ing multiple domains and closed boundaries. 127

Convergence Factors: Consider the stiffness approximation of the second-order 128

OSM (see [3]), 129

Sosm =
ab−ω2

a+ b
+

1
a+ b

k2
y . (14)

Substituting Λ1 = Λ2 = Sosm in (5), we get the convergence factor of OSM to be 130

ρosm =

∣∣∣∣∣∣
ab+ k2

y−ω2 + i(a+ b)
√

ω2− k2
y

ab+ k2
y−ω2− i(a+ b)

√
ω2− k2

y

∣∣∣∣∣∣

2

.

To compare, we use a two-layer PMDL-Schwarz method with L1 = 2/a, and 131

L2 = 2/b, where a,b are the OSM parameters in (14). The stiffness approximation 132

of the two-layer PMDL-Schwarz method is then given by 133
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S pmdl
n = p2− q2

2

p2 + p1
,

p2 =
1
L2
− (ω2− k2

y)L2

4
, q2 =− 1

L2
− (ω2− k2

y)L2

4
,

p1 =
1
L1
− (ω2− k2

y)L1

4
.

Substituting Λ1 = Λ2 = S pmdl
n in (5), we get the convergence factor of PMDL- 134

Schwarz that can be simplified to 135

ρpmdl =

⎛
⎜⎝
∣∣∣∣∣∣
ab+ k2

y−ω2 + i(a+ b)
√

ω2− k2
y

ab+ k2
y−ω2− i(a+ b)

√
ω2− k2

y

∣∣∣∣∣∣

2⎞
⎟⎠

2

.

Clearly ρpmdl = ρ2
osm, and so the parameters of PMDL-Schwarz are chosen such 136

that its convergence factor is the square of that of OSM and the method performs 137

uniformly better over the entire range of wavenumbers ky. 138

It is easy to numerically verify the above result for the model problem (1a), with 139

the domain Ω decomposed into two semi-infinite layers. We take a = 20.741i and 140

b = 47.071 to be the OSM parameters as these were shown in [3] to be optimal 141

over the allowed wavenumber range ky ∈ [π ,60π ]. Figure 1a compares the conver- 142

gence factors of OSM and PMDL-Schwarz method (with L1 = 2/a and L2 = 2/b) 143

and shows clearly that the proposed method performs better over the entire range of 144

wavenumbers for a slightly increased computational cost (there is only one auxiliary 145

variable introduced, which is similar to one line of nodes in 2-D).
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Numerical Example: In this example, Eq. (1a) is solved on a square domain 147

(Ω ≡ [0,1]× [0,1]) with ω = 10π and a point source f = 1/2 is applied at (0,0.5). 148

Homogeneous Neumann boundary condition is applied on the left (x = 0), Dirichlet 149

condition at the top (y = 1) and bottom (y = 0), and an ABC on the right (x = 1). 150

The computational domain is discretized using 60 bilinear finite elements along each 151

direction. The domain is decomposed into nine subdomains with three subdomains 152

along each dimension. The convergence plot is shown in Fig. 1b. As expected, the 153

PMDL-Schwarz method converges twice as fast as the conventional OSM. 154

5 Discussion 155

We proposed a Schwarz method for Helmholtz equation based on the concepts of 156

perfectly matched discrete layers (PMDL), a recently developed absorbing boundary 157

condition that is related to the higher order rational approximations and the Per- 158

fectly Matched Layers. By examining the convergence factor and with the help of a 159

numerical example, PMDL-Schwarz method is shown to converge faster than exist- 160

ing Optimized Schwarz Methods. Although not treated in this paper, it is important 161

to mention that the PMDL is not just limited to the Helmholtz equation, but also 162

to more complicated vector equations such as the elastic and electromagnetic wave 163

equations. Thus, it is expected that the PMDL-Schwarz method would provide ac- 164

celerated convergence in frequency domain computations in these contexts. Further- 165

more, as Waveform Relaxation Method in time domain share similar ideas with OSM 166

(see e.g. [2]), PMDL ideas can also be used to improve the convergence of existing 167

waveform relaxation methods. These extensions are subjects of ongoing research. 168
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