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Why DDM for basin modeling ?

Basin modeling aims at reconstructing the time evolution of a sedimentary basin in order
to make quantitative predictions of geological phenomena leading to oil accumulations. It
accounts for porous medium compaction, heat transfer, hydrocarbon formation and migration.
Recent evolutions of basin simulators have contributed to improve the treatment of geological
discontinuities such as faults and salt domes. Faults divide the basin into blocks which slide
between themselves. They may be a preferential path or in opposite a barrier for hydrocarbons
migration. A salt is an impervious medium and becomes a trap for hydrocarbon. CERES is
an advanced prototype of ��� sedimentary basin tool that can handle non-vertical faults and
salt or mud tectonics (figure 1). Domain decomposition methods provide a way to solve the
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Figure 1: CERES 2D real basin

equations on the complex geometries considered, naturally defined as a set of adjacent sliding
blocks and faults.
Following the work of [NR95], [NRdS94], [JNR01], we use nonoverlapping techniques and
study several interface conditions, namely Robin type conditions.
The paper is organized as follows. First, the physical models and the governing equations
taken into account are reviewed. Then the DDM are presented on a simpler equation in
which we find the main characteristics of the problem. The optimized interface conditions
are detailed for this equation. Finally, numerical results are shown.
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Models and governing equations

In the blocks, the model accounts for the porous medium compaction, erosion, heat transfer,
hydrocarbon formation and migration. The equations are mass conservation of solid and fluids
(water,oil,gas) coupled with the Darcy’s law and a compaction law. The faults have a constant
porosity, but the permeability of the faults evolves in time. We consider only incompressible
multiphase flows.
To present the DD method we consider a simplified basin model where geometry does not
evolve in time. Using an IMPES (IMplicit Pressure, Explicit Saturation) scheme, we first
solve a parabolic pressure equation and then update explicitly the phase saturations.
After time discretization, the pressure equation is then roughly written as follows :

���������
	�
� ��������������� ������ �"! �#���$�&%
(1)

where
�

is the pressure, 	 the compressibility of the porous medium and
�

the intrinsic
permeability tensor of the porous medium divided by the fluid viscosity. The permeability
depends heavily on the lithology under consideration. The contrast in the lithologies can
induce a discontinuity of the permeability tensor of several orders of magnitude (up to six
orders).
Moreover we have to deal with subdomains of various size, block width is about ')(+*-, while
fault width is about '.(/, .

The DDM for the pressure equation

Our goal is to find a domain decomposition method robust enough to deal with the strong dis-
continuities that can arise along and across an interface between two subdomains and whose
behavior is not ruined by small subdomains. To cope with these difficulties, we introduce
a Robin type interface condition whose coefficients are computed in order to optimize the
convergence rate of the Additive Schwarz method (ASM for short).
We consider the parabolic linear equation (1) with strongly discontinuous coefficients

�
. We

cut the domain into nonoverlapping subdomains 021 and solve the equation in each subdomain.
In the framework of this paper, we weigh up only matching grid but the approach is extended
to non-matching grid as see on figure 1.
Pressure and flux continuity between two subdomains 0/3 and 054 are expressed as Robin
conditions on the interface 6 :

	 4 � 3 �87 4 ���
���"�� �"! ����� 3"9;:< 3 � 	 4 � 4 �=7 4 ���

� �"�� �>! � ��� 4�9;:< 4 on 6 (2)

	 3 � 4 �87 3 ���
���"�� �"! ����� 4 9;:< 4 � 	 3 � 3 �=7 3 ���

� �"�� �>! � ��� 3 9;:< 3 on 6 (3)

where 	 1 , 7 1 are real such that 	 3 7 4 � 	 4 7 3
?� ( and 	 1 7 1A@B( .
The idea is to find the coefficients

� 	 1DC 7 1 � which allow a fast convergence of DD algo-
rithm, namely ASM with the boundary condition (2) in 0 3 and boundary condition (3) in 0 4 .
This has been introduced by Nataf and co-author for convection-diffusion equation [NRdS94]
[NR95].

To compute the Robin coefficients, we successively address two main difficulties. First, we
consider the case of two subdomains with a jump of permeability across the interface. Sec-
ondly, we deal with two subdomains separated by a small fault.
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Robin conditions for two unbounded subdomains

We consider two unbounded subdomains 0 3 , 0 4 with an interface 6 . The subdomains have
homogeneous permeability

� 3 in subdomain 0 3 and
� 4 in 0 4 . The computation of Robin co-
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Figure 2: Optimal interface condition for 2 domains

efficients is based on the approximation of the Optimal Interface Condition. Optimal Interface
Conditions are conditions which ensure convergence of ASM in 2 iterations for a decompo-
sition into 2 subdomains. They extend the Artificial Boundary Condition and keep the idea
of “packing the neighboring domain problem on the interface 6 ”. To do so, let us define the
classical Steklov-Poincaré operator � 1 associated to 0 1 :

� 1�� ��� 	 � � �#������"! �#� 1 9#:< 1 � 	 where
� 1


 � 1 ��� 1 � � ( in 0 1� 1 � �
on 6

We can write the Optimal Interface Condition as follows, for 0�3 :

� 3
�#������"! ��� 3 9;:< 3 � � 4 � 4 ��� 3 ��� ��� 4

���"�� �>! ��� 4 9;:< 4 � � 4 � 4 ��� 4 �
For 054 , we have :

� 4
�#������"! ��� 4 9;:< 4 � � 3 � 3 ��� 4 ��� ��� 3

���"�� �>! ��� 3 9;:< 3 � � 3 � 3 ��� 3 �
The contribution of subdomain 0 4 appears through � 4 . The jump of permeability

�
is found

in the two terms
� 3 , � 4 .

To find the OIC, we need to make explicit the Steklov-Poincaré operator . Therefore we
perform a Fourier transform with respect to � of equation (1) and we solve exactly the obtained
equation which only depends on the � variable. The expression of ��1 , symbol of � 1 , are not
polynomial in * , dual variable with respect to � . The Steklov-Poincaré operator and so the
OIC are not local in space and must be approximated.
In order to obtain the Robin boundary condition, two constant approximations have been
considered, giving the following coefficients:� taking a Taylor expansion of �51 , we obtain:

� 	 1 C 7 1 ��� � � 1�
 1 C ' � ,� we perform the minimization of the convergence rate on a frequency slot
� *��51�� C *������ � .

This can be done only in the homogeneous case. We have the following expression:
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Figure 3: OIC for the fault

� 	 1 C 7 1 �5� � � 1�� � 
 41 � * 4�51 � � 
 41 � * 4����� C ' � . This leads to the geometric average
of the operator at the two extreme frequencies

� * �51�� C *�� � � � .
Although optimized in the homogeneous case, these conditions are efficient in the heteroge-
neous case. Indeed the coefficient 	 1 is a good approximation of � 1 .
These last conditions have been implemented and give good results for subdomains with more
or less similar size [WFS96]. However in the case of two blocks separated by a fault, the
results need to be improved.

Robin conditions for two unbounded domains and one fault

Now, we examine the case of three subdomains : we have two unbounded subdomains 0 3 , 0 4
with a small fault 0�� . The permeability of each subdomain is uniform :

� 3 in 0 3 , � 4 in 0 4
and

� � in 0�� . We first set up the interface condition on the fault boundaries (see figure 3). As
for a given boundary, the fault has only one neighbor, so we can define the Optimal Interface
Condition as previously, where � 1 is the Steklov-Poincaré operator associated to domain 021 .
Next we set up the OIC on the blocks boundaries. Assume, we are on the boundary of 0+3 to
find the OIC (see figure 4). The OIC uses � �
	 4 the Steklov-Poincaré operator associated to
0 � 0�3 :
� �
	 4 � � 3 � � � ������ �"! �#� 9 :< � ��� 3 � � , where

�
is solution to
 � � � ��� � ( in 0�� � � 4 � ��� � ( in 0 4� � � 3 � on 6A3�� �

and
� �#������"! ��� 9 :< continuous on 6 4

Although more complex, the Steklov-Poincaré operator is determined as previously perform-
ing a Fourier transform with respect to � . This operator � �
	 4 depends on the permeabilities� 4 in domain 0 4 , � � in the fault and the fault width. As before the operators � 1 , � 1 	
� are
non-local in space, so we compute a polynomial approximation:� we take the OIC for a frequency *�� ,� it is difficult to optimize the convergence rate, so we keep the idea to approximate the

operator by the geometric average of two extreme values:
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Figure 4: OIC for the subdomain 0�3

Fault boundary condition:
� 	 � 1 C 7 � 1 ��� � � 1 � � 1 � * �51 � � � 1 � * � � � � C ' � ;

Block boundary condition:
� 	 1 C 7 1 �$� � � � � � �
	 1 � *��51�� � � �
	 1 � *������ � C ' � .

In the following, we denote by OIC, Robin conditions with these last
� 	 1 C 7 1 � coefficients.

Numerical results

The approach is then extended to a real basin model (CERES 2D) which accounts for porous
medium sedimentation, compaction, erosion and blocks displacements along faults. In CERES
2D, we have a discontinuity jump of the permeability

�
along the interface, so the Robin coef-

ficient 	 1 is computed locally on each edge. The interface problem is solved with the GMRES
algorithm. The unknowns are � 3 � 	 4 � 3 �87 4
	 3 , � 4 � 	 3 � 3 �87 3�	 4 , .

� 3 4 �
� 3 � 	 3 � 3 � 7 3�	A3
with 	A3 � ����� 3

���"�� �>! ��� 3 9;:< 3 � and

��� ��
� 3 � � 3 � � %

in 0�3���
on � 0�3
��6

	 4 � 3 �87 4 � � 3
��������"! � � 3 9 :< 3 �$� � 3 on 6

The equations are
Pressure and Flux continuity


 � 3 4 � � 3 � � � 4 � (� 3 � � 4 3 � � 4 � � (
Numerical results show the good behavior of the Robin interface conditions. Comparisons
with the Dirichlet-Neumann conditions illustrate the robustness and the good convergence
rate of DD algorithms such as additive Schwarz method, possibly accelerated by GMRES.

Mesh refinement

We consider a synthetic basin (figure 5) composed of two heterogeneous blocks with
� 3 , � 4

permeability and a fault with
� � permeability. We want to study the influence of vertical

mesh subdivision: each row is subdivided in 2 then 4, so the number of interface unknowns is
growing. Moreover, the permeability of the fault is either: pervious, impervious or an average
of the two neighbouring block cells (variable for short).
In Figure 6, we report the number of DDM iterations as a function of the number of inter-
face unknowns for different fault permeability. The dotted lines show the Dirichlet-Neumann
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Figure 5: Synthetic basin
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Figure 6: Number of DDM iterations

condition, Dirichlet on blocks, Neumann on fault,(DN for short) and the solid lines show the
Robin condition. The Dirichlet-Neumann interface condition is very competitive for pervious
fault but not for the other cases. The Robin conditions converge well; all curves correspond
to '.( iterations of DDM. The number of DDM iterations does not increase too much with the
number of interface unknowns for OIC. The behavior of OIC is regular for all spreading of
fault permeability.

Time evolution

We can study the time evolution of DDM since the number of unknowns increases through
time as new layers of sediments are deposited. Each layer corresponds to a row of homoge-
neous cells. On the following figure 7, a synthetic basin is composed of two heterogeneous
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Figure 7: Synthetic basin
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blocks and one fault. Each block has alternated and shift row of pervious-impervious medium.
The fault permeability is successively: pervious, impervious or variable.
In Figure 8, we report the number of DDM iterations as a function of the number unknowns.
The dotted lines show DN condition and the solid lines show OIC. The number of DDM
iterations grows slowly with the number of unknowns for the OIC. Here again, OIC show
robustness regarding subdomain heterogeneities.

Conclusion

We introduced a domain decomposition method applied to sedimentary basin modeling. The
DDM is robust enough to overcome high jump of heterogeneity, up to 6 orders and various
sizes of subdomains. To do this, we have chosen a nonoverlapping ASM with Optimal In-
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terface condition, Robin type. The interface problem is solved with a GMRES algorithm.
Despite the good results obtained, the fault is still a very small subdomain compared to the
blocks. Therefore it seems promising to consider one dimensional fault [Fla01]. The fault
model is then included in the interface condition between two blocks. We wish to improve
the non-matching approach so as to win in flexibility and to have less interface unknowns.
Another improvement is to extend the DDM to a “fully implicit” discretization scheme for
multiphase flow. DDM will be applied to a system of pressure and saturation variables.
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