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23. Two iterative substructuring methods for
Maxwell’s equations with discontinuous coefficients
in two dimensions

A. Toselli 1

Introduction

In this paper, we present some numerical results for a Balancing and a FETI method
for the solution of a linear system arising from the edge element approximation of a
vector field problem in two dimensions. The two methods are presented as projected
preconditioned conjugate algorithms and give comparable performances in our tests.
Our numerical results show that their condition number is independent of the number
of substructures and grows only polylogarithmically with the number of unknowns
associated with individual substructures. It is also independent of the jumps of both
coefficients of the original problem.
We consider the following problem: Find u ∈ H0(curl ; Ω), such that

a(u,v) =
∫

Ω

f · v dx, v ∈ H0(curl ; Ω), (1)

where the bilinear form a(·, ·) is defined as

a(u,v) :=
∫

Ω

(a curlu curlv + bu · v) dx,

and f ∈ L2(Ω)2. Here, Ω is a bounded, open, connected polygon in R
2, H(curl ; Ω)

is the space of vectors in L2(Ω)2, with curl in L2(Ω), and H0(curl ; Ω) its subspace
of vectors with vanishing tangential component on ∂Ω. The coefficients a and b are
positive functions in L∞(Ω) bounded away from zero.

Finite element functions

For the discretization of problem (1), we consider a conforming triangulation Th of
Ω, of maximum diameter h, consisting of triangles or rectangles. We then define U
as the space of edge elements of lowest degree, defined on Th, originally introduced in
[N8́0]. Let Eh be the set of edges of Th. We recall that the tangential components of
the vectors in U are constant along the edges of Th and that these constant values can
be chosen as the degrees of freedom in U .
We then consider a non–overlapping partition of the domain Ω, consisting of sub-

domains, also called substructures, FH = {Ωi| i = 1, . . . , N}. The substructures are
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connected polygonal domains the boundaries of which do not cut through the ele-
ments, and H is the maximum of their diameters. Let ti be the unit tangent to ∂Ωi,
having counterclockwise direction and restricted to ∂Ωi \ ∂Ω. We will employ these
unit vectors to define the coarse spaces of our algorithms. We also define the interface
Γ as

Γ :=
N⋃

i=1

∂Ωi \ ∂Ω.

We remark that we only present numerical results for uniform meshes in this paper, but
that our algorithms can be defined for more general cases. In particular, a theoretical
bound for a FETI method, which is valid for triangulations that are shape–regular
and locally quasi uniform, was proven in [TK99]. In the following, we assume, for
simplicity, that the coefficient b is constant on each substructure and equal to bi.
Given a substructure Ωi, we define Ui as the space of restrictions of vectors in U

to the Ωi. We also define the local spaces Wi of tangential vectors as

Wi := {(ui · ti) ti restricted to ∂Ωi \ ∂Ω | ui ∈ Ui}.

The vectors in Wi are uniquely determined by the degrees of freedom on ∂Ωi. In
the following, the column vector of degrees of freedom of ui ∈ Wi will be denoted by
ui, and it will be convenient to use the same notation for spaces of vectors and the
corresponding spaces of degrees of freedom.
The finite element discretization of (1) gives rise to a symmetric, positive definite

linear system. The degrees of freedom inside the substructures and on ∂Ω only belong
to one substructure and can be eliminated in parallel by block Gaussian elimination.
We are then left with a linear system involving only the degrees of freedom on Γ. Let
Si be the local Schur complement relative to the degrees of freedom on ∂Ωi \ ∂Ω

Si : Wi −→Wi.

If a local vector on Ωi is divided into two subvectors, of degrees of freedom corre-
sponding to edges inside Ωi and on ∂Ωi \ ∂Ω, respectively, the local stiffness matrix
of Ai can be written as

Ai =

[
AII

i AIB
i

ABI
i ABB

i

]
,

and the Schur complement Si is defined as

Si := ABB
i −ABI

i

(
AII

i

)−1
AIB

i .

Before introducing our algorithms, we need to define a set of local scaling functions.
These functions are constructed with the values of the coefficient b and ensure that
the condition number of our iterative methods is independent of the jumps of both
coefficients. For a substructure Ωi, we define a piecewise constant function µ

†
i on

∂Ωi \ ∂Ω such that

µ†i |e ≡ bδi
bδi + b

δ
k

, e ⊂ ∂Ωi ∩ ∂Ωk, e ∈ Eh,
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where δ ≥ 1/2 is arbitrary but fixed. Let Di be the diagonal matrix that represents
the multiplication of vectors in Wi by µ

†
i .

Conjugate Gradient algorithms

The two methods that we consider can be described as projected preconditioned con-
jugate gradient (PPCG) algorithms. We suppose that we are looking for the solution
of a symmetric, positive definite linear system

Fz = d, z ∈ V, (2)

arising from a finite element discretization of an elliptic problem.
We first introduce a suitable subspace V0 ⊂ V , of low dimension K, that will play

the role of a coarse space, and define P0 as the projection onto V0 that is orthogonal
with respect to the scalar product induced by F . The operator

P := I − P0,

is also an orthogonal projection and, if

V = V0 ⊕ V ⊥,

we have that Range(P ) = V ⊥. Let z0 = P0z be the projection of the solution z onto
V0.
We consider the following preconditioned system

PMP t Fz = PMP t d, z ∈ z0 + V ⊥, (3)

where the preconditioner M has the form

M :=
N∑

i=1

Mi,

and the application of the local component Mi involves the solution of a local problem
on the substructure Ωi. Here, P t denotes the transpose of the matrix P . Recalling
the definition of P0, we see that P t �= P , in general.
A full description of the conjugate gradient method applied to Equation (3) can

be found in [FCM95, Tos00, TK99]. Here, we only remark that the action of the
projection P on a vector can be evaluated at the expense of applying the matrix F
and of solving a coarse problem of dimension K. Moreover, the action of P t does not
need to be calculated in practice.
A suitable choice of the projection P ensures that the condition number of the

corresponding iterative method is independent of the number of substructures and
depends only on the ratio ρ = H/h, which is a measure of the number of degrees of
freedom in each substructure. In addition, a suitable choice of the preconditioner M
ensures that the condition number is slowly increasing with ρ and is independent of
possibly large jumps of the coefficients.
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A Balancing method

The method that we present is a variant of the Neumann–Neumann algorithm intro-
duced and analyzed in [Tos00]: it employs the same preconditionerM , but a different
coarse space V0. In [Tos00], the partition FH is required to be a conforming coarse
triangulation of Ω and V0 is the standard edge element space defined on it, while,
here, the partition is arbitrary and the basis functions of V0 are associated to the
substructures.
We consider the linear system obtained from the approximation of Problem (1)

on the conforming finite element space U and define W as the space of tangential
components of the vectors in U on Γ. We note that the restrictions of the vectors in
W to ∂Ωi \ ∂Ω belong to Wi, for i = 1, . . . , N . After eliminating the variables interior
to the substructures, we are left with the system

Su = g, u ∈W, (4)

where S is the global Schur complement matrix relative to Γ and g is the resulting
right hand side. We define the operators

Rt
i : Wi −→W, i = 1, . . . , N,

as the extensions by zero of local vectors in Wi on the whole Γ, and note that the Ri

are the restriction operators from W to Wi. We can then write

S =
N∑

i=1

Rt
iSiRi.

Problem (4) then corresponds to the choice F = S, d = g, V = W , in (2). We define
the coarse space as the span of the extensions to Γ of the vectors {ti}:

V0 := span{Rt
i ti | i = 1, . . . , N}.

It can easily be checked that the dimension of V0 is equal to the number of substruc-
tures minus one.
Following [Tos00], we define the local components of the preconditioner as

Mi := Rt
iDi S

−1
i DiRi, i = 1, . . . , N.

A FETI method

The method presented in this section was originally developed and analyzed in [TK99].
We define the non–conforming space Ŵ as

Ŵ :=
N∏

i=1

Wi.

We note that the vectors in Ŵ are in general discontinuous across Γ and, given two
substructures, Ωi and Ωk, that share a common edge, there are two different fields on
∂Ωi ∩ ∂Ωk that correspond to a vector u ∈ Ŵ . We define the block diagonal matrix

Ŝ := diag{S1, S2, · · · , SN} : Ŵ −→ Ŵ .
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We can then formulate our finite element problem as a constrained minimization
problem: Find u ∈ Ŵ , such that

1
2u

t Ŝ u− ut g −→ min

Bu = 0

}
(5)

where the matrix B evaluates the difference of the corresponding degrees of freedom
on Γ and can be written as

B =
[
B(1) B(2) · · · B(N)

]
.

Here, g is constructed with the local load vectors on the substructures. We then
introduce a vector of Lagrange multipliers λ, to enforce the constraints, and obtain
a saddle point formulation of (5). After eliminating the primal variable u, we obtain
the following equation for the dual variable λ, see [FCM95, TK99],

BŜ−1Btλ = BŜ−1g, λ ∈ Range(B). (6)

We consider a PPCG method for the solution of (6). This corresponds to the choice
F = BŜ−1Bt, d = BŜ−1g, V = Range(B), in (2). We note that V is the space of
jumps of the tangential vectors in Ŵ . We then define the coarse space V0 as a space
of scaled jumps of the local vectors {ti}

V0 := span{Bi (I −Di) ti | i = 1, . . . , N}.

We refer to [TK99, Sect. 5] for additional details and for a discussion of the dimension
of V0. In particular, we note that the vectors {ti} also need to be scaled using the
lengths of the edges in Eh if the mesh Th is not uniform.
Following [TK99, KW99], we define the local components of the preconditioner as

Mi := (BD̂−1Bt)−1 BiD
−1
i ŜiD

−1
i B

t
i (BD̂

−1Bt)−1,

where D̂ := diag{D1, D2, · · · , DN}.

Numerical results

We first remark that, for the Balancing method, at each conjugate gradient step,
we need to solve one Neumann problem on each substructure for the application of
the preconditioner, and two Dirichlet problems for the application of S and P (we
recall that P is a projection that is orthogonal with respect to the scalar product
induced by F = S). Similarly, for the FETI method, at each step, we need to solve
two Neumann problems and one Dirichlet problem on each substructure. We refer to
[FCM95, Tos00, TK99] for additional comments.
In our numerical tests, we consider the domain Ω = (0, 1)2 and two uniform tri-

angulations Th and FH . The fine triangulation is made of triangles for the FETI
method, and squares for the Balancing method. It consists of 2 ∗ n2 triangles and n2

squares, respectively, with h = 1/n. We note that, as opposed to the case of nodal
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Figure 1: Case with a = 1, b = 1, n = 32, 64, 128, 192, 256. Estimated condition
number (asterisk) and least–square second order logarithmic polynomial (solid line),
versus ρ = H/h for the Balancing (on the left) and the FETI (on the right) methods.
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Figure 2: Checkerboard distribution of the coefficients in the unit square.

elements, for a fixed value of n, triangular and rectangular meshes do not give rise
to edge element spaces of the same dimension. Nevertheless, the mesh size h and the
order of accuracy is the same, see [N8́0], and our comparisons of the two methods are
still reasonably fair. The coarse triangulation consists of nc2 squares which are unions
of fine elements, with H = 1/nc. The substructures Ωi are the elements of the coarse
triangulation FH . Throughout, we use the value δ = 1/2.
We first consider a case with constant coefficients and meshes with

n = 32, 64, 128, 192, 256. Figure 1 shows the estimated condition number (aster-
isks), for a = b = 1, as a function of ρ = H/h, for different values of n. The results
for the FETI method are taken from [TK99]. For a fixed value of ρ, the condition
number is quite insensitive to the dimension of the fine mesh. We have also plotted
the best second order logarithmic polynomial least–square fits; our numerical results
for both methods are consistent with the bound for the condition number

κ(PMP tF ) ≤ C
(
1 + log

H

h

)2

,

and suggest that this bound is sharp. We note that this bound was proved in [TK99]
for the FETI method.
We then consider some cases where the coefficients have jumps. In Table 1, we

show some results when the coefficient b has jumps across the substructures. We
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b2, ρ 4 8 16
10−4 15.6 (22) 13.4 (22) 12.1 (22)
10−3 15.1 (21) 13.2 (21) 12.1 (23)
10−2 13.8 (20) 12.5 (21) 11.9 (23)
10−1 10.8 (19) 10.8 (21) 11.5 (22)
1 6.31 (17) 7.55 (19) 10.2 (21)
10 3.87 (13) 5.41 (15) 7.36 (18)
102 2.33 (8) 3.12 (10) 3.87 (11)
103 3.70 (12) 4.77 (14) 5.56 (16)
104 3.96 (14) 4.33 (14) 4.64 (15)
105 3.27 (12) 3.55 (13) 4.34 (14)
106 2.99 (12) 3.44 (13) 4.28 (14)

4 8 16
4.12 (17) 5.99 (22) 8.42 (26)
4.09 (16) 5.96 (20) 8.37 (25)
4.04 (15) 5.88 (19) 8.25 (23)
3.88 (13) 5.65 (17) 7.91 (21)
3.44 (12) 5.02 (15) 6.99 (18)
2.56 (9) 3.73 (12) 5.16 (14)
1.76 (7) 2.41 (8) 3.10 (10)
2.51 (9) 3.37 (11) 3.99 (12)
2.74 (10) 3.09 (11) 3.51 (11)
2.20 (9) 2.73 (10) 3.35 (11)
2.09 (9) 2.65 (10) 3.34 (12)

Table 1: Checkerboard distribution for b: (b1, b2). Estimated condition number and
number of CG iterations to obtain a relative preconditioned residual less than 10−6

(in parentheses), versus ρ = H/h (columns) and b2 (rows), for the Balancing (on the
left) and the FETI (on the right) methods. Case of n = 128, a = 1, and b1 = 100.

consider the checkerboard distribution shown in Figure 2, where b is equal to b1 in the
shaded area and to b2 elsewhere. For a fixed value of n = 128, b1 = 100, and a = 1, the
estimated condition number and the number of iterations in order to obtain a reduction
of the norm of the preconditioned residual by a factor 10−6, are shown as a function
of ρ = H/h and b2. For b2 = 100, the coefficient b has a uniform distribution, and this
corresponds to a minimum for the condition number and the number of iterations for
both methods. When b2 decreases or increases, the condition number and the number
of iterations also increase, but they can still be bounded independently of b2. We
observe that the two methods give comparable iteration counts.
In Table 2, we show some results when the coefficient a has jumps. We consider

the checkerboard distribution shown in Figure 2, where a is equal to a1 in the shaded
area and to a2 elsewhere. For a fixed value of n = 128, a1 = 0.01, and b = 1, the
estimated condition number and the number of iterations are shown as a function
of ρ = H/h and a2. We remark that for a2 = 0.01, the coefficient a has a uniform
distribution. For both methods, a slight increase in the number of iterations and the
condition number is observed, when a2 is decreased or increased and when H/h is
large.
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