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A FETI Solver for Corotational
Nonlinear Problems

Kendall H. Pierson , Michel Lesoinne '

Introduction

Corotational Finite Element Methods (CFEM) are a way of approaching structural
problems where geometric nonlinearities are involved due to large rotations and
displacements but small deformations. Such problems are of particular importance
to the aerospace industry where structures may exhibit large rotations and flexions,
but all components remain within the realm of small deformations. CFEM is nonlinear
by design and solution of a single problem requires solving many linear systems with
an evolving tangent stiffness matrix. Large systems lead naturally to using the Finite
Element Tearing and Interconnecting (FETT) method to solve them. The FETT method
is a robust and efficient domain decomposition method for linear structural problems
and its use for the resolution of some other classes of nonlinear problems has already
been examined by several investigators [Rou95, RR9§].

Specific issues to CFEM are related to an unsymmetric tangent stiffness matrix and
associated null space which evolves during the nonlinear analysis. We have approached
this problem by symmetrizing the tangent stiffness matrix as it was shown to not
destroy convergence [Hau94]. Investigations into efficient preconditioning strategies
have dealt with reuse of previous Krylov spaces and freezing the preconditioner from
one outer iteration to another. Finally, we present a large scale wing type structure
undergoing large rotations and flexions.
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Figure 1 Base and corotated configurations

The Corotational Formulation

The corotational formulation (CR) of geometrical nonlinear structural problems
separates rigid body motions from purely deformational motions. Conceptually, in a
finite element framework, CR decomposes total displacements into pure rigid body
motions and deformational motions at each configuration of nonlinear structural
analysis. This can be expressed in vector form for translation degrees of freedom
(dofs) and in rotation matrix form for rotation dofs

v=1vp + VR R=RpRgr (])

where vp is deformational motion, vg is rigid body motion, Rp is the deformational
rotation matrix, and Rg is the rigid body rotation matrix. The non-additive behavior
of rotation dofs when the rotation axis changes and other geometrical nonlinearities
associated with large displacements leads to the nonlinear equilibrium equation

Fint(m)+Fe:ct =0 (2)

where 2 contains both v and R, Fj,¢(2) is the internal force vector which is dependent
on the state of the structure z, and Fley is the external force vector. Eq. (1) are written
on an element by element basis. For each element, a reference configuration Cjy is
created, and the vr, Rr displacements express the passage from this configuration to a
corotated configuration C'r (also called shadow element) [dV76]. The element corotated
configuration is calculated as a rigid body motion of the element base configuration Cj.
From this shadow configuration, the deformational displacements vg4, R4 are used to
evaluate the elemental contribution to the internal force vector. As these deformations
are small, the usual linear elemental matrices can be used to compute the forces in a
frame attached to C'r. After obtaining these local forces, they are transformed back to
the global frame (to which Cj is attached) before summation (see Figure 1). Benefits
of using CR over other nonlinear structural analysis description such as the Total
Lagrangian method are

¢ Effective for large rotation/small-strain problems
e Re-use of existing small-strain finite element libraries
e Ability to decouple material nonlinearities from geometric nonlinearities
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Maneuvering aircraft undergo large rotations while experiencing small deformational
motions. Structural material properties remain linear while nonlinearities are
geometric in nature. Adopting CR to model geometrical nonlinear behavior of
maneuvering aircraft offers the extra advantage of correctly modeling control surfaces.

Overview of FETI

To keep this paper self-contained, we begin with an overview of the original FETI
method [FR94, Far91, FR92]. The general problem to be solved is

Ku=F (3)

where K 1s an an n x n symmetric positive semi-definite sparse matrix arising from the
finite element discretization of a second- or fourth-order elastostatic (or elastodynamic)
problem defined over a domain €, and F'is a right hand side n-long vector representing
generalized forces. Let € be partitioned into a set of N; disconnected subdomains
Q) then the FETT method replaces Eq. (3) with the following equivalent system of
subdomain equations

K®ul) = F6) — BTy s =1, .., N,
N, 4)
A = Y BOWE = g “
s=1

where K(*) and F{®) are the unassembled restrictions of K and F to subdomain Q)
A is a vector of Lagrange multipliers introduced to enforce the constraint A = 0 on
the subdomain interface boundary ng), u(*) is the local solution vector, and B() is
a signed Boolean matrix that describes the subdomain interconnectivity. A detailed
derivation of (4) can be found in [FR94, FMR94]. An arbitrary mesh partition may
contain Ny < N, floating subdomains — that is, subdomains lacking the necessary
number of essential boundary conditions needed to prevent the subdomain matrices
K () from being singular. Therefore Ny of the local Neumann problems

KOul) = p&) g0\ 5 =1, . Ny (5)
are ill-posed. Solvability is guaranteed based on the following condition
ROT(FO BN =0 s =1, .., Ny (6)

where R(*) is the null space of K(*). The solution of Eq. (5) is then given by
w8 = K(S)+(F(8) _ B(S)T)\) + RG)o(s) (7)

where K& is a generalized inverse of K(*) that need not be explicitly computed
[FR92] and a(*) is a vector of six or fewer constants. The extra unknowns a(*) are
compensated by additional equations resulting from Eqgs. (6) Substituting Eq. (7) into
Eq. (4) and using Eq. (6) leads to the FETI interface problem

e o] -1 5] ®)
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where
N )
Fr = ZB(S)[((S)"LB(S)T; Gr = [ BMRW) . BNy B(Ny) ];
s=1
N
of = [ Q" NOE ] Y BUIK ); )
S:l
e = | FOTBO FOVT BNT) |
K®OY = K& 5 Q) isnot a floating subdomain (10)
KT — 4 generalized inverse of K® if Q) is a floating subdomain

For structural mechanics and structural dynamics problems, Fr is symmetric since
the subdomain stiffness matrices K(*) are symmetric. The objective is to solve by a
Preconditioned Conjugate Gradient (PCG) algorithm the interface problem (8) instead
of the original problem (3). The PCG algorithm is modified by a projection that
enforces iterates A\* satisfy Eq. (6). The projector P is defined as

P=1-G(GFG)'GT (11)
and the FETT algorithm can be written as

1. Initialize
A0 Gr (G Gr)~te
r0 d— FI)\O

2. Tterate k:i 2, untll convergence

wk=1 = PT

Zk—l — F -1

yk—l — P 2 (12)
k= T ke 1/yk—2ka—2 ¢ =0)
Ph :Jk 1+Ckk1 (' =)
vE = Tkt
)‘k — /\k-—l_l_ykpk
e LY

The reader can check that the FETT algorithm results in applying PCG to:
AN =d (13)

where A = PTF;P.

Use of FETI for Corotational Problems

We wish to solve Eq. (4) using a Newton-Raphson approach which leads us to solving
the following set of successive linear systems

Kr(zo)Aur = fi
Kr(zi_1)Au; = f; (14)
I{T(;‘Bn—])Aun = fn
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where Kp(x;—1) is the ith configurations tangent stiffness matrix, z;_1 is the previous
structural state, Aw; is the i*® incremental displacement vector, f; is the i** right hand
side vector which depends on the solution strategy [Rik72], and n is the number of
iterations for convergence. After each linear solve, z; is updated using the incremental
displacement. Convergence of Newton-Raphson is based on reaching these criteria

[|Aul|, < tolerancegi,p, [|fll, < tolerance,esiquar (15)

The tangent stiffness matrices are generally unsymmetric before convergence is
reached. In this work we used a symmetrized version of the tangent matrices, as it is
required by the FETI method and has been shown not to harm convergence [Hau94].

Solution of Nearby Linear Systems

Multiple Left Hand Sides (MLHS)

We will refer to the method described in the previous paragraph as the Full Newton
(FN) method. The tangent stiffness matrix is rebuilt at each nonlinear iteration,
resulting in a robust geometrical nonlinear structural solution algorithm.

The use of FETT to solve Eqs. (14) creates a set of systems similar to Eq. (13).
Solving each system by PCG can be viewed as a minimization problem of the form:

min(®;) = 17227 A4; ) — dT A i=1,...,n (16)

To solve each system, a Krylov space is generated by the PCG algorithm. This space
is spanned by the set of search directions. Let us denote the set of search directions
for the linear system i by

Si={si st ... sk, ... 80} i=1,...,n (17)
The search directions computed within a Newton iteration are orthogonal with
respect to A;. However, since the tangent stiffness matrix is changing over successive
Newton iterations, the search directions are not orthogonal across Newton iterations.
Nonetheless, the successive A; matrices can be expected to be spectrally close one to
another. This observation suggests that at step 7 we can make use of the previous
sets S; to define a preconditioner [Rou95]. The approach is to replace the usual
preconditioned residual vector Pr by a modified vector Pr given by:

i—1

Pr = PT+ZSjyj (18)

j=1
where the vectors y; are successively chosen to satisfy the minimization problem

min(®;) = 1/227 A;x — T2 (19)
o

7

J

with A = Pr+ > Siyi. Note that the function being minimized in this case is similar
=1

to that given in Eq. (16) when A; is replaced with A; and d; is replaced by the current
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Figure 2 V-22 Wing Panel, Parallel Speedup for M1, M2 and M3

PCG residual r. All computations performed, we obtain the expression for y;:

j—1
yi = (SFA;8) 71 (S r = ST A;(Pr+ ) Siw))  j=1,...,i-1 (20)
=1

The assumption is that successive tangent stiffness matrices are stmilar in some sense
and thus the preconditioner will be of benefit. Due to the corotational formulation,
the null space of the subdomain tangent matrices Kq(f) evolves in time. This implies
that the projector must be correctly recomputed at each iteration and the space of

search directions must contain projected vectors.

Multiple Right Hand Sides (MRHS)

An alternative approach to solve Eq. (14) is to use a Newton Like (NL) Method where
the tangent stiffness matrix may be “frozen” and reused for subsequent nonlinear
iterations. In the extreme case, the initial tangent stiffness matrix may be used for
the entire simulation but then convergence of the outer Newton iterations is not
guaranteed. The effect of using a NL method versus a FN method is to slow down
convergence and possibly increase the number of linear solutions.

In contrast to the FN method, we now solve with a fixed A; matrix for a set of
varying right hand sides. Therefore, as has been done for linear dynamic problems
[Far95], the set of search directions S; can be kept Ay orthogonal to all previous sets.
The initial A} must now be modified to include the contribution of all previous sets
and then orthogonality of the search directions with respect to A; enforced at each
FETT iteration.

We can of course combine the MRHS approach with the Krylov Space
preconditioning of MLHS. In this case, the matrix A; is changed every m iteration,
and we can apply the preconditioning of Eqs. (18) in which case the sets S; are the
union of all sets generated by the same tangent matrix Ay.
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Numerical Example: Composite Wing Panel

The composite wing panel from a V-22 tilt-rotor aircraft [Dav91] considered here
contains design features such as ply drop-offs, ply interleaves, axial stiffeners,
transverse ribs, clips, brackets and a large elliptical access hole. The panel is clamped
at one end and loaded on the opposite end by prescribed displacements. The finite
element models, designated M1, M2, and M3 have 56916, 223620, and 885924 d.o.f.
respectively (see Figure 2). Each model is composed of 47 composite materials and
discretized with three node ANS shell elements.

The results in Table 1 were generated with the 2-Level FETT Method [FM98] for
fourth order elastostatic problems on a SGI Onyx 2000 using 16 processors. FETI
convergence was monitored using a tolerance of 1.0E-3 while Newton’s convergence
was checked using 1.0E-5. These values were chosen due to quadratic convergence
properties of Newton’s method. The optimal Dirichlet FETI preconditioner was
selected for this problem. Using a NI method, this problem requires two load steps
and eight Newton iterations while FN requires one load step and four iterations to
converge. Both methods were tested with and without Krylov acceleration methods
to compare iteration counts, CPU, and memory requirements. For FN, Kp, and
FETI preconditioner FD_1 are rebuilt at each Newton iteration while for NL method,
rebuilding occurs at the start of a load step. The most evident conclusion is the

Table 1 Composite Panel Model, M3 (885924 d.o.f., 250 Subdomains)

Load Step | Newton Ttr. | NL-KLR | NL-KR FN-KL FN
1 1 143 itr. 143 itr. 143 1tr. 143 itr.
2 72 itr. 72 itr. 171 itr. 198 itr.
3 36 itr. 36 itr. 108 1tr. 198 itr.
4 19 itr. 19 itr. 46 itr. 198 itr.
2 5 124 itr. 168 1tr. - itr. - itr.
6 57 itr. 64 itr. - itr. - itr.
7 36 itr. 33 itr. - itr. - itr.
8 16 itr. 14 itr. - itr. - itr.
Total 503 itr. 549 itr. 468 itr. 737 itr.
FETI CPU | 940 sec. | 1078 sec. 979 sec. 1513 sec.
FETI Mem. | 3710 Mb. | 3417 Mb. | 3657 Mb. | 3307 Mb.

approximately 40% decrease in CPU when a Krylov acceleration technique is applied.
The other conclusion is a small 10% increase in memory requirements associated with
the Krylov acceleration methods over the FN method. This can be attributed to the
number of stored search direction vectors for each algorithm. The FN with Krylov
left hand side acceleration (KL) had the lowest total iteration count and was roughly
the same CPU time as NI with Krylov right hand side acceleration (KR). When both
Krylov accelerators (KLR) are applied to the NL method, there is a slight improvement
in total iteration count and CPU time. Figure 2 shows almost linear parallel speedup
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for each model. This trend suggests that larger problems will gain greater speedups
with increasing numbers of processors. Optimal mesh decompositions of 40 (M1), 140
(M2), and 250 (M3) subdomains were used to compute these speedups [LP98].

Conclusion

We have shown the FETI method in conjunction with CFEM concept to be efficient in
solving large scale geometrical nonlinear problems undergoing large rotations and small
deformations. Future research will involve implementing the FETI solver and CFEM
in a nonlinear dynamic algorithm to solve time-dependent geometrical nonlinear
problems such as maneuvering aircraft.
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