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Overlapping Schwarz Methods for
Helmholtz’s Equation

M. A. Casarin !, O. B. Widlund ?

Introduction

In this paper, we report on our experience in solving the scalar indefinite Helmholtz
equation iteratively. We propose a modification of the standard Overlapping Schwarz
Methods, allowing discontinuities across the interfaces between the subdomains, and
using a Sommerfeld-type, quasi-transparent boundary condition for the local solvers;
this results in a very efficient iterative method. We concentrate on the numerical
performance of the accelerated version of our method and study the dependence of the
rate of convergence on several important parameters, e.g. the number of subdomains,
the geometry of the subdomains, the wave number, the mesh size, the size of overlap,
coefficient inhomogeneities and the shape of the obstacle. We can conclude that our
method, not yet fully explained theoretically, is very fast and efficient. Previous work
on this project was performed in collaboration with F. W. Elliott and X-C. Cai
[CCFWEW9T].
We consider a Helmholtz model problem given by
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—Au—(k(z))’u = f inQ

g—z + iku = g¢gs on 0Qg (1)
g—z = gn on 0Qn ’ '
U = h on 0Qp

where € is a bounded two or three-dimensional region. We assume that 0Qs is
non empty. This equation is then uniquely solvable, and we note that the boundary
condition, said to be of Sommerfeld type, is essential in the proof of this fact.

We use Green’s formula, and complex conjugation of the test functions, to convert
(1) into variational form: Find u € V' such that,

b(u,v) = / (Vu -V — k?uv)dr + zk/ uvds
Q Qs

= /fz‘;d:c—}—/ ggﬁds—f—/ gnTds = F(v) Yv €V,
0 Qs 0N

where V is an appropriate subspace of H!(Q). A finite element discretization can now
be defined straightforwardly by replacing V by a suitable conforming finite element
space. We concentrate here on low order finite elements.

Our interest in the application of the direct (non-mixed) finite element method to
this equation has been inspired by the work of Thlenburg and Babuska [IB95, TB97].
They have considered the well-posedness of the original problem and different finite
element discretizations and proven, for a model problem in one dimension, that the
basic estimate

fulis < CkIF |-

holds. In the finite element case, an assumption of hk < 1 is used. The constant C'
is independent of p, the degree of the finite elements. Thlenburg has also conducted
extensive numerical experiments which suggest that this bound holds for problems in
two or three dimensions. Error bounds of the following form are also given for p = 1
and kh small enough:

lerror|m < C16 + C>k0? where § = best H' —error.

With oscillatory solutions typical, we can expect # to be on the order of kh. The
second term, which is due to the phase error, will dominate unless k2h is on the order
of 1. In our experiments we have used a mesh fine enough to guarantee that the phase
error 1s of the same order as the other component of the error.

Overlapping Method — Continuous and Discontinuous

In the past few years, much work has been done on the iterative solution of the
Helmholtz’s equation that governs the time-harmonic scattering of sound waves by an
object. Among many others, see, e.g., [FMLI8, Kim98] we mention, in particular, the
thesis of Després [Des91]. We consider an overlapping version of his method (which was
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briefly considered in his work in a particular case). Our basic multiplicative, one-level
overlapping Schwarz method can be described as follows: let {Q;} be a set of open
subregions that covers the given open region Q. Each subregion €; can have many
disconnected components; it is often profitable to color the subregions of an original
overlapping decomposition of € using different colors for any pair of subregions that
intersect. The original set of subregions can then be partitioned into sets of subregions,
one of each color, effectively reducing the number of subregions. This decreases the
number of fractional steps of our Schwarz methods and helps make the algorithm
parallel. The number of colors is denoted by J.

For j=1,...,J, given a finite element function u"“'j_Tl, defined on 2, we compute

u?f 7 the restriction of u"+7 to Q;, by solving the variational form of the following

local problem:
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Here, QS refers to the complement of 2, and n is the outward normal. The boundary
of the original region € has been partitioned into three parts, two of which are possibly
empty: 0Q = 0Q5 U 0Qn U 9Qp. The Sommerfeld condition is imposed on 92; N Q
to guarantee solvability and stability of this problem; it also has a dramatic impact
on the convergence rate, if compared with the use of standard Dirichlet conditions for
this problem, even in the case when the latter is enough to guarantee stability of the
problems defined on the Q;; see [CCFWEW97].

An important detail, somewhat hidden in the above formulation of the local
problems is that at step j, represented by (2), the values computed for u"*!, at
the mesh points on 0€2; might differ from those of u™ at the same points. This forces
us to consider two alternatives:

1. the new values replace the old ones, and the resulting finite element
function is continuous, with possibly large gradients just outside 9Q;.
2. the new and the old values are kept.

The second alternative produces an algorithm which proceeds to the converged,
continuous solution through a sequence of discontinuous iterates. It is hereafter called
the Discontinuous Overlapping Schwarz Method (OSM-D). In [CCFWEW97], we
established, through a variety of numerical experiments, that the discontinuous version
is actually superior in most cases considered; many details about the implementation
of the method are also given in that paper in which the discontinuous method is
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referred to as ALG3. We only mention here that in the finite element context the
oug,.

? is made with the consistent use

computation of normal derivatives of the form
nge
7

of Green’s formula, and that the discontinuities force us to perform a subassembly
involving elements outside Q;, which are next to 9Q;. Similarly, the computation of
terms originating from the term ¢kug. involve a subassembly of the mass matrix

corresponding to different parts of 8(12j, It is easy to see that in the absence of
crosspoints interior to €, and formed by the boundaries of the internal overlapping
subdomains, the continuous and discontinuous methods produce the same iterates.

In this paper, we report on an experimental study of the discontinuous method
which 1s more detailed than the previous ones, and show that the method is indeed
very fast and efficient, even in the absence of a coarse space, which is very important
for the efficiency of some competing alternatives; see [FML98]. We consider several
different geometries, unstructured meshes and different partitions of the domain into
subdomains. The experiments were all conducted with MATLAB, and the geometry,
mesh generation, and matrix assemblies were done using the PDE toolbox.

The theoretical results that we have obtained have already been outlined in
[CCFWEW9T]. They are satisfactory only for the continuous version of the method.

Convergence Study

We now describe the geometry and discretization used in our numerical experiments.
We work with three different geometries and boundary conditions: a) a Sommerfeld
square, which is a unit square with homogeneous Sommerfeld conditions on the four
sides. The right hand side is chosen so that the solution is the combination of two
plane waves incoming at angles 36° and 1787; b) a waveguide problem, which is
again a unit square, with homogeneous Sommerfeld conditions on the horizontal
sides, homogeneous Neumann conditions on the right vertical side, and a constant
Dirichlet condition identically equal to 1 on the left vertical side. The right hand side
[ is zero; and c) the scattering geometry, which corresponds to a cavity of diameter
approximately 1 inside a circle of radius approximately 3.7; the right hand side is again
zero, and Dirichlet data is imposed on the surface of the scatterer, corresponding to
an incoming plane wave of wavenumber k (given in the following) and angle 36°.
For this last case, the geometry of Q and the 14 non-overlapping subdomains €; is
given in Figure 1 under the name GSC14-1. The scatterer is a cavity with vertices
at: (—0.52,—0.52),(—0.52,0.52),(0.5,0.5),(—0.5,0.5), (—0.5,—0.5), (0.5, —0.5). The
overlap is produced by a layer of § elements added in all directions which are interior
to €. In all experiments the mesh is unstructured, and except for the very small test
cases, the number of mesh points is certainly enough to resolve the oscillations in the
solution.

Apart from the geometry, the relevant parameters for describing an experiment are:

e the total number of grid points N. We define 1/h ~ v/N when Q is a
unit square;

e k the spatial frequency, which can depend on z € Q;

e nsub the number of subregions;
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e § the number of elements across half of the overlap;

Our main goal is to study the dependence of the number of iterations of our
method on the parameters listed above, as well as to evaluate how this iteration count
will depend on the original boundary conditions, the variation of the coefficients,
the geometrical placement of the subdomains, and the global geometry. The linear,
sequential method of (2) is accelerated by the GMRES method with restart equal to
30, and the algorithm is stopped as soon as the norm of the residual is reduced by 5
orders of magnitude (1077).

When possible, we have compared our method with two competing alternatives:
a) a FETI type algorithm as reported by Farhat, Macedo, and Lesoinne [FML98];
and b) the ADOP method proposed by Kim [Kim9§]. This is possible because our
implementation is extremely flexible with respect to the geometry and all other
parameters; this comparison is also made in order to provide a fair evaluation of
our scheme. We note that the comparisons are made using exactly the same problems
as reported in the references given above.

Dependence on the mesh size

Our first set of experiments involves a study of the optimality with respect to the mesh
size. We compare our method first with the FETI method, applied to a waveguide
problem [FML98]Table 1, and then with the ADOP method, for a Sommerfeld square
[Kim98]Table 6. We can see, from Tables 1 and 2, that the OSM-D method is very
competitive, and that when compared with the ADOP method it has the added
advantage of requiring no parameter estimation. The data shows that the iteration
growth is mild with respect to the number of points. This observation is enforced by
the data in the other tables; see, e.g. Tables 10 and 11. All our experiments used
unstructured meshes, and that therefore we cannot exactly reproduce the discrete
problem being solved by an alternative algorithm on a structured mesh.

Table 1 Waveguide problem with & = 20, variable mesh size: comparison
between the FETI method with 5 x 5 subdomains, and OSM-D with 24

subdomains and § = 6.

FETI OSM-D

1/h | itcount 1/h | itcount
100 | 71 83 | 26

200 | 70 163 | 32

250 | 73

Dependence on the wavenumber k

We also study the behavior of the method as the wavenumber & varies. The waveguide
problem 1is solved with both the FETI and the OSM-D methods, and the data is
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Table 2 Sommerfeld square problem, k& = 25, and 16 x 4 subdomains:
comparison between the ADOP method and OSM-D with § =5

ADOP OSM-D

1/h | itcount 1/h | itcount
128 | 60 114 | 37

256 | 68 173 | 43

reported in Table 3.

Table 3 Waveguide Problem: comparison between the FETI method with
1/h = 384, no coarse space, nsub = 5 x 5, and the OSM-D method with 27649
points, 24 subdomains, and § = 6

FETI Waveguide ||  OSM-D Waveguide
k itcount k itcount

20 70 20 58

40 | 136 [| 40 64

60 | 164 [| 60 70

We have also solved the scattering problem; the data is in Table 4, and the geometry
(GSC14-1) is given in Figure 1.

Table 4 OSM-D method applied to the Scattering problem. The domain is
partitioned into 14 subdomains (GSC14-1), § = 6, and there are a total of 26596

points
OSM-D
k itcount
12 11
24 | 15
36 | 19(6=9)

We can see from Tables 3 and 4 that the increase of the wavenumber does lead to a
growth in the iteration count, although this effect is not as pronounced as for the FETT
method without a coarse space. It is also clear that even in the scattering geometry
the dependence on the wave number is quite weak. This is in contrast with a plausible
intuitive interpretation of the method as producing a system of waves propagating
across the subdomains; the larger the wavenumber the more complex would be the
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reflection and diffraction phenomena, and one would therefore expect the performance
of the algorithm to deteriorate quite rapidly.

In actual applications, the coefficients of the time-harmonic wave equation often
vary, and a natural question is therefore whether the performance of the method
deteriorates if the coefficients are inhomogeneous. We borrow the following coefficient
functions from Kim [Kim98]equation (69):

ky = 12/((2 +sinmz) (2 — sin 37y))

ko = 12/((1.1+sin7wz) 1 (1.1 —sin7y)) .

The Discontinuous Overlapping Method with § = 4 is then applied to the scattering
geometry partitioned into 14 subdomains, and the results appear in Table 5, where
we have also included a set of results for the case of constant k. It can be seen from
this Table that the OSM-D appears to be very robust with respect to coefficient
inhomogeneities in the wavenumber function; the actual iteration count is also very
modest. Inhomogeneities in the other coefficients have also been studied, but since the
behavior is very similar, we omit that particular data.

Table 5 Application of the OSM-D method to a Scattering problem with
variable wavenumber. The domain is partitioned into 14 subdomains
(GSC14-1), and § = 4.

k=12 | ky ko
N itcount | itcount | itcount
1735 | 7 7 10
6746 | 7 10 14
26596 | 11 13 20

Dependence on the number of subdomains

The OSM-D method proposed here relies only on local solves. The performance of
similar methods, in the positive definite case, deteriorates with an increasing number of
subdomains. The same behavior occurs here; our goal is now to explore this dependence
quantitatively, and to compare that with the FETI method without a coarse space.
The results for the Waveguide problem are given in Table 6. The value of k is chosen
so that we have approximately 3 wavelengths across the domain, and the number of
mesh points is of the same order in both cases. The iteration count clearly grows with
the number of subdomains but less so for the OSM-D method. At this time, we do
not have a good explanation for this fact.

We also provide the iteration count for a scattering problem, with the domain
partitioned into 5,14, and 98 subdomains, respectively, all with good aspect ratios.
The value of k is set to 20, and 6 = 4. The same trend appears here, although the actual
number of iterations is low. The development and implementation of computationally
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Table 6 Waveguide problem, & = 20, 3 wavelengths across the domain.
Comparison between the FETI method with approximately 40,000 points in the
mesh, and § = 6.

FETI [|  OSM-D

nsub | itcount || nsub | itcount
2x2 | 15 | 2x2 | 12
4x4 | 46 | 4x4 | 26
5x5 | 70 || 24 | 32

efficient coarse spaces is currently being considered, in order to treat cases with
possibly many more subdomains.

Table 7 OSM-D, Scattering k =20, § = 4

N nsub | itcount
27649 | 5 8
26596 | 14 14
15392 | 98 27

Dependence on the original boundary conditions

We next compare two sets of runs of the OSM-D on the same square region. The main
difference from one run to the other is the boundary condition: the first is a Waveguide
square, partitioned into 24 subdomains, and the second is a Sommerfeld square,
partitioned into 5 x 5 subdomains. Again, the subdomain partition is not regular, and
was made by hand, in order to produce non-square subregions with relatively good
aspect ratios. We use k = 20 and § = 4 in both cases and the results are reported
in Table 8. It is immediately apparent that the boundary condition imposed on 92
has a considerable impact on the iteration count. This is surprising if compared with
similar experiments for the standard OSM method in the positive definite case, with
Dirichlet local problems. It appears that the waveguide boundary condition excites
modes that are not damped as efficiently by the algorithm, and therefore the iteration
count is larger for this case.

Dependence on the subdomain geometry

As previously mentioned, our method could be viewed intuitively in terms of waves
propagating across the subdomains: the Sommerfeld-like condition for the local
problems could be considered a better choice than the standard Dirichlet condition in
this respect, and that would be a possible explanation for its much better performance;
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Table 8 Study of the dependence on the original boundary conditions for the
OSM-D method. Comparison between the Waveguide square partitioned into 24
subdomains, and the Sommerfeld square partitioned into 25 subdomains. In
both cases, k = 20 and § = 4.

Waveguide [|  Sommerfeld

1/h | itcount || 1/h |

83 | 26 [| 121 | 9
163 32 161 13

see [CCFWEWO97]. We note that such heuristics is at the core of some methods for
the Helmholtz’s equation which look for more transparent boundary conditions for the
local problems; see [Gha96]. Inspired by this heuristics, we explore, in this section, how
the algorithm depends on the particular choice and configuration of the subdomains.

Our first test case involves the scattering geometry GSC14-1. We use the OSM-D
method, accelerated with GMRES, for various values of &, 4, and N (the total number
of mesh points). The results are reported in Table 9. The geometry of this and the

next cases are represented in Figure 1.

Table 9 OSM-D, Scattering problem, geometry GSC14-1, full opening, 14

subdomains, and § = 6, unless otherwise noted.

N k=12 | k=24 | k=236,6=90 | k=12,6=4
4438 | 46 78 50 >60
17404 | 72 >200 | > 100 > 60

The tips at the entrance of the cavity are possibly points where our method would
have difficulty converging to the exact solution. In order to check that, we change
the subdomain partition from the geometry GSC14-1 to GSC14-2 (see Figure 1). The
number of subdomains and the other parameters are kept the same, and the results
are reported in Table 10. The iteration count decreases in all cases considered, at
times by a factor of 6, showing that the configuration of the subdomains (and not
only their number and aspect ratio) is indeed of a considerable importance for the
iterative solution of this problem.

Continuing the exploration of the heuristics mentioned above, we now question
whether the aperture of the cavity has a deleterious impact on iteration count. We
keep roughly the same subdomain configuration as in GSC14-2, except that we change
the cavity into one with a tighter aperture, respectively 1/2 and 1/3 of the opening,
for Tables 11 and 12, corresponding to the geometries GSC14-3 and GSC14-4. The
iteration count increases from GSC14-3 to GSC14-4, but the changes are not very
dramatic.
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Table 10 OSM-D, Scattering problem, geometry GSC14-2, full opening, 14

subdomains, § = 6 unless otherwise noted. The subdomain configuration is

slightly different from that of the previous table.

N k=12 | k=24 | k=36,0=9 | k=12,6=4
6746 7 14 29 11
26596 | 11 15 19 13
105608 13

Table 11 OSM-D, Scattering problem, geometry GSC14-3, 1/2 the opening,
14 subdomains, § = 6 unless otherwise noted. The subdomain configuration is

slightly different from that of the previous table.

N k=12 | k=24 | k=236,0=90 | k=12,0=4
7380 | 11 58 39 15
28966 | 10 20 44 13

Table 12 OSM-D, Scattering problem, geometry GSC14-4, 14 subdomains,
4 = 6 unless otherwise noted. The subdomain configuration is slightly different

from that of the previous table.

N k=12 k=24 [ k=236,6=0 | k=12,6=4
9552 | 13 89 54 24
37576 | 15 33 74 17

187

In these last four tables, one can also observe the effect of increasing the total

number of points, and/or increasing the wavenumber k. The behavior follows the

trends identified in our previous tables. In Table 11, for example, we can also observe

that increasing the size of the overlap d does improve the method, both for £ = 12
and k = 36. So far, we have not been able to explain the extraneous behavior showed
by the method for k£ = 24, namely that increasing the number of points improves the
method, and also that the iteration count is relatively large.

Conclusion

We have developed and tested the OSM-D method in a variety of situations, and
showed that it compares favorably with some alternative algorithms. While efforts to
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develop coarse spaces appropriate to our method are under way, we have here used only
a method without a global component even for cases with relatively many subdomains.
The iteration count does deteriorate with the number of subdomains, but the actual
numbers are small. The algorithm is robust in regards to the wavenumber; this is
a salient feature of our method. An interesting new issue considered is the effect of
the configuration of the subdomains on the performance of the scheme; this has been
studied in subsection 19, where we have established a basic trend; a more refined study
is also in progress. At last we want to point out that for a non-symmetric, indefinite
problem like the Helmholtz’s equation considered here, the boundary conditions on
00 can have a significant impact on the iterative method; see subsection 19.
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Figure 1 Scattering geometries, with several configurations of the subdomains



