42

Domain Decomposition in
High-Level Parallelization of PDE
Codes

Xing Cai !

INTRODUCTION

We introduce a high-level approach to parallelizing sequential software for solving
partial differential equations (PDEs). In short, we use domain decomposition (DD)
at a higher level than that of linear algebra. Combined with extensive use of object-
oriented (O-0) programming techniques, this approach promotes an efficient, flexible
and systematic parallelization process. We present the software engineering aspects of
this approach by explaining a generic implementation framework in the O-O scientific
computing environment—Diffpack. Finally, a concrete case study will demonstrate the
efficiency and flexibility of the parallelization process in this scenario.

Domain decomposition and parallel PDE codes

DD methods (see e.g. [CM94, SBG96]) are not only numerically efficient, but also
inherently parallel. The original solution domain is partitioned into many subdomains
that can be assigned to different processors of a parallel computer. The global solution
is then found by an iterative process in which subdomain solves are invoked under a
global administration. Therefore, using DD as the mathematical foundation for writing
parallel PDE codes is becoming quite standard nowadays. However, the common

1 Department of Informatics, University of Oslo, P.O. Box 1080, N-0316 Oslo, Norway.
email: xingca@ifi.uio.no
Eleventh International Conference on Domain Decomposition Methods

FEditors Choi-Hong Lai, Petter E. Bjgrstad, Mark Cross and Olof B. Widlund ©1999 DDM.org

DD IN HIGH-LEVEL PARALLELIZATION 389

practice has been to address the DD methods directly at the level of linear algebra,
l.e., in terms of parallel matrix-vector operations. In addition, the implementation
of parallel PDE codes is often done using procedural programming languages. These
two factors together bring the consequence that parallel PDE codes need often to be
written entirely from scratch, thus making little use of existing sequential PDE codes.

Object-oriented programming and Diffpack

In recent years, the application of object-oriented (O-O) programming techniques in
developing PDE software has shown its many advantages. The C++ programming
language, which is a foremost representative in this respect, has inherent features
that are well suited for the complicated process of numerical PDE solution. (We refer
to [BN94, Lan99] for an introduction to this topic.) The most attractive features of
C++ are modularity, polymorphism and inheritance. So extensive code reuse is a
direct advantage of O-O programming. The possibility of a modular implementation
of mathematical abstractions gives rise to an application independent PDE kernel,
which 1s reusable in many PDE applications from different disciplines of scientific
computing. Moreover, other functionalities such as I/0, visualization and automatic
result reporting can also be extracted into libraries, because O-O programming
promotes a unified interface of PDE simulators. The application programmer needs
only to concentrate on critical numerics, at a high abstraction level if desired. Therefore
reliable, flexible and extensible simulators can be developed in an efficient way.

Diffpack is an O-O scientific computing environment (see [Lan99, Dif]). The
design of Diffpack has taken numerical efficiency into consideration by confining O-
O techniques to high-level administrative tasks, while using low-level C codes and
carefully constructed for-loops in CPU intensive numerics. The C++ Diffpack libraries
contain, among other things, user-friendly objects for /O, GUIs, arrays, linear systems
and solvers, grids, scalar and vector fields, visualization and grid generation interfaces.
This makes it very easy to build prototypical PDE simulators based on reliable and
optimized Diffpack components.

The simulator-parallel model

Parallel computing has the potential for not only reducing the computation time,
but also concentrating memories belonging to different processors to carry out
larger calculations. So the migration of sequential PDE simulators to multiprocessor
platforms is well motivated. Basically, we want the time used to solve a PDE on a
parallel computer with P homogeneous processors to be about T//P, where T is the
solution time needed by a sequential simulator. This requires a good numerical scheme
that promotes an optimal parallelization of a sequential PDE simulator.

In this paper, we will focus on the overlapping DD methods of the additive Schwarz
type, partly due to their simple algorithmic structure and partly due to the readiness
for parallelism. An important observation about the additive Schwarz methods is that
the main ingredient is the subdomain solver that carries out local and sequential
operations. Furthermore, these sequential operations are of the same type as those
needed to solve the original PDE on the whole domain. So if a mechanism can be found
to apply an existing sequential simulator in subdomain solves on each subdomain, the

390 CAIL

parallelization work will reduce to global administration and inter-subdomain data
exchange. The O-O programming techniques serve perfectly as such a mechanism.
First, they can produce sequential PDE simulators with unified generic interfaces,
which easily allow modification and extension in order to be incorporated into a parallel
setting. Second, the data encapsulation feature of O-O programming makes it possible
to hide the computational details, e.g., the matrix-vector operations. As a result, O-O
programming techniques allow code reuse at the level of subdomain simulators, which
is higher than the level of linear algebra.

We hence introduce the so-called simulator-parallel programming model that was
first proposed in [BCLT97]. In this model, each processor of a parallel computer hosts
one or several subdomains. Each subdomain is then handled by a subdomain solver,
which is easily extended from an existing sequential simulator designed for the whole
domain. It is the basic building block of overlapping Schwarz methods—the subdomain
solver—which relates our simulator-parallel model to DD methods, because an O-O
sequential PDE simulator for the whole domain has all the functionalities needed
in the subdomain solves. Of course, running DD methods in parallel needs a global
administration and additional communication functionalities. We will show in the
next section that O-O programming techniques are the right tool to produce a generic
implementation framework where users can plug-and-play ready-built components for
global administration and communication, so that parallel PDE simulators can be
developed on the basis of existing sequential simulators in an efficient and systematic
way.

A GENERIC IMPLEMENTATION FRAMEWORK

Our objective is a generic implementation framework that is flexible, extensible and
portable, so that the parallelization work following the simulator-parallel model is
relatively straightforward. On the whole, the efficiency and flexibility of the existing
sequential simulator will be maintained, while the intrinsic numerical efficiency of DD
can enhance the overall efficiency of the resulting parallel simulator. We also allow the
user to make run-time decision of whether using additive DD methods as stand-alone
iterative methods or preconditioners for Krylov subspace methods.

We consider such a generic framework consisting of three main parts: the sequential
subdomain simulators, a communication part and a global administrator. Two class
hierarchies, whose base classes are SubdomainSimulator and Communicator, are
built to represent the sequential subdomain simulators and to handle the needed
communications, respectively. The different classes in the class hierarchies are designed
to be used in different situations. In addition, the design of the global administrator
offers great flexibility. It allows the user to choose, among other things, the specific
numerical method at run-time. The part inside the global administrator that makes
connections with the subdomain simulators and the communication part can also be
easily modified by the user.

DD IN HIGH-LEVEL PARALLELIZATION 391

Subdomain simulators

The base class SubdomainSimulator gives a generic representation of any sequential
subdomain simulator in our framework. Functionalities of SubdomainSimulator
include a numerical discretization scheme and an assembly process for building up
the local linear system. A linear algebra toolbox also exists in SubdomainSimulator
to control the choice of the local solution method, preconditioner, stopping criterion
etc. We have made most of the member functions of SubdomainSimulator to be pure
virtual, so they need to be overridden in a derived subclass. These member functions
constitute a standard interface shared by all the subdomain simulators. It is through
this generic interface that the communication part and the global administrator of
the implementation framework operate. Adapting an existing sequential simulator
also becomes easy, because most of the work consists merely of binding the
pure virtual member functions in SubdomainSimulator to the concrete member
functions in the existing simulator. Building up the class hierarchy, we have derived
SubdomainFEMSolver for simulators solving a scalar/vector elliptic PDE discretized by
finite element methods, and SubdomainFDMSolver for simulators using finite difference
discretizations. Furthermore, a subclass named SubdomainMGSolver is derived from
SubdomainFEMSolver to represent simulators using multigrid V-cycles in subdomain
solves.

Communication

During parallel DD iterations, the concrete communication between processors is in
form of exchanging messages and is handled by objects of Communicator. On each
processor, there is one such object connecting to the local subdomain simulator(s).
The reason for separating the communication part from the global administrator
is to hide the low-level message passing codes and instead offer convenient high-
level communication commands. It is thus possible to change MPI, which is used
in the current implementation, to another message passing standard without affecting
the other parts of the framework. Different subclasses of Communicator are derived
to handle different situations. For example, class CommunicatorFEMSP specializes in
communication between subdomain simulators using the finite element discretization,
whereas class CommunicatorFDMSP works for subdomain simulators using the finite
different method.

The global administrator

The inheritance feature of C4++4+ is reflected in the above two class hierarchies
SubdomainSimulator and Communicator. The user can either take ready-built class
objects directly from these two hierarchies and use them in a specific application, or
derive new subclasses to incorporate new adaptations. However, the O-O design of the
global administrator offers further flexibility and lets the user plug-and-play at run-
time. For example, the user can decide whether to use DD as a stand-alone iterative
method or a preconditioner for a specific Krylov subspace method. The user is also
free to choose between running one-level and two-level DD by removal or addition of
a coarse global grid. We have thus devised a main administrator class PdeFemAdmSP

392 CAIL

(ParaPDESoIver) ------- »(SPAdMUDC)

/

(BasicDDSolver) (KrylovDDSoIver)

(ConjGradDD)(BiCGStabDD) e

Figure 1 The class hierarchy of ParaPDESolver and its connection to
SPAdmUDC. The solid arrows indicate inheritance (“is-a” relationship), whereas
the dashed arrow indicates “has-a” relationship.

whose basic structure is as follows:

class PdeFemAdmSP

{

protected:
ParaPDESolver_prm psolver_prm;
Handle (ParaPDESolver) psolver;
SPAdmUDC* udc;

};

In above, ParaPDESolver_prm is an object containing many parameters to be chosen
by the user at run-time. Among the parameters there are: 1. flag indicating whether
the overlapping Schwarz method should be used as a stand-alone iterative method,
2. name of the desired Krylov subspace method (when an overlapping Schwarz method
is used as a preconditioner), and 3. number of maximum iterations, prescribed accuracy
and type of the convergence monitor etc.

The second component of class PdeFemAdmSP is ParaPDESolver whose class
hierarchy is depicted in Figure 1. In this hierarchy, class BasicDDSolver represents an
overlapping Schwarz method to be used as a stand-alone iterative solver, and subclasses
of KrylovDDSolver use one overlapping Schwarz iteration as the preconditioner. At
run-time, when the user has chosen the parameters by e.g. filling items on a user-
friendly menu, a concrete object of ParaPDESolver will be created. (We remark that
Handle(X) is a safer pointer for class X in Diffpack.) The involved subdomain solves
will then be undertaken by a sequential subdomain simulator, which ParaPDESolver
gets connection through the third and last component of PdeFemAdmSP, namely
SPAdAmUDC. It is through SPAdmUDC that ParaPDESolver invokes member functions
of the subdomain simulator.

In addition to making connection between ParaPDESolver and the subdomain
simulators, SPAdmUDC is also responsible for getting access to the communication part
for the global administrator. We remark that “UDC” stands for “user-defined-codes”
and is used here to indicate that the user has the possibility of making modifications
of the member functions. In a parallel simulation, one SPAAmUDC object resides on each
processor and has one Communicator object plus one or several SubdomainSimulator
objects under its control.

DD IN HIGH-LEVEL PARALLELIZATION 393

n

I

Figure 2 The solution domain for the linear elasticity problem.

A CASE STUDY

We demonstrate the efficiency and flexibility of the generic implementation framework
by parallelizing an existing sequential Diffpack simulator for solving a linear elasticity
problem in 2D. The mathematical model is the following vector PDE:

—pAU = (p+ \)VV .U =f,

where U = (uy, uz) is the primary unknown and f is a given vector function, y and
A are constants. The 2D domain is a quarter of a hollow disk (see Figure 2). On the
boundary the stress vector is prescribed, except on 'y, where u; = 0, and on 'y, where
Uy = 0.

As stated above, a sequential Diffpack simulator exists for solving the 2D linear
elasticity problem. The simulator is represented by class Elasticity2D, which has
a grid, a finite element field for the unknowns, a member function modelling the
integrands in the weak formulation, a linear system toolbox, and some standard
functions for prescribing the boundary conditions. To extend Elasticity2D with
the generic interface required by the implementation framework, and allow multigrid
V-cycles as subdomain solvers, we derive a new class SubdomainELSolver as the
subclass of both Elasticity2D and SubdomainMGSolver. A simplified definition of
SubdomainELSolver is as follows:

class SubdomainELSolver : public SubdomainMGSolver,
public Elasticity2D

virtual void markEssBCs ();
virtual void createHierMatrices ();

}s

The above code segment shows that the main work of class SubdomainELSolver
is to give explicit definitions of the pure virtual member functions of class
SubdomainMGSolver. This is essentially done by binding the virtual functions of
SubdomainMGSolver to concrete member functions of SubdomainELSolver. For
example, the member function markEssBCs uses a corresponding function of
Elasticity2D to mark essential boundary conditions on all levels of subgrids, while
the member function createHierMatrices creates stiffness matrices on all the grid
levels and has the following implementation:

394 CAIL

void SubdomainELSolver:: createHierMatrices () {
for (int i=no_of_grids; i>=1; i--)
Elasticity2D: :makeSystem(dofs (i) () ,Amats (i) () ,rhs_vecs(i)());
}

The second job a user needs to do is to make a connection between the extended
sequential simulator SubdomainELSolver and the global administrator. This is
achieved by deriving a new class ELSolverSP as a subclass of SPAdmUDC. Inside
ELSolverSP, the user basically creates an object of SubdomainELSolver for each
subdomain and puts them under the control of SPAAmUDC. Finally, the Diffpack main
program will look as follows:

int main (int nargs, const char** args)

{
initDiffpack (nargs, args); // MPI_Init etc called inside
MenuStream* menu = new MenuStream;
menu->setInputFile ("el_parameters.txt");
menu->init ("Linear Elasticity Test","DD Approach");

ELSolverSP udc;

PdeFemAdmSP adm;

udc.define (*menu, MAIN); adm.define (*menu, MAIN);
menu->prompt () ;

udc.scan (*menu); adm.scan (*menu) ;
adm.attachSPAdmUDC (&udc) ;

adm.init ();

adm.solve ();

}

For the numerical experiments we use a structured 241 x 241 curvilinear global
grid. We use one processor per subdomain and denote the number of processors
by P. For P > 1 the additive Schwarz method is used as the preconditioner for
a parallel BiCGStab method for solving the linear system. The stopping criterion
requires that the discrete Ls-norm of the global residual is reduced by a factor of 10°.
We introduce a global coarse grid to allow two-level DD iterations and obtain the
overlapping subgrids by extending a non-overlapping partition with a factor of % in
each direction. One local multigrid V-cycle with one pre- and post-SSOR-smoothing
is used in subdomain solves. For P = 1 a sequential BiCGStab method preconditioned
by one global multigrid V-cycle is used. The CPU measurements obtained on an SGI
Cray Origin 2000 machine with R10000 processors are listed in Table 1, where T
denotes the number of BiCGStab iterations.

CONCLUDING REMARKS

We have shown that addressing DD at the level of subdomain simulators, combined
with extensive use of O-O programming techniques, results in an efficient, flexible
and systematic process for producing parallel PDE codes. A generic implementation
framework is presented in this paper, together with a concrete case study where we

DD IN HIGH-LEVEL PARALLELIZATION 395

Table 1 Solution of the linear system for the linear elasticity problem.

| P | CpU | 1 | subdomain grid |
1 166.01 |19 241 x 241
2 | 24.64 | 12 129 x 241
4 | 14.97 | 14 129 x 129
8§ | 5.96 | 11 69 x 129
16 | 3.58 | 13 69 x 69

parallelize an existing sequential Diffpack simulator for a linear elasticity problem.
Finally, we mention that the generic implementation framework can be easily extended
to parallelize sequential simulators for nonlinear elliptic PDEs and parabolic problems,
where the computational kernel of the DD methods is still subdomain solves (see

e.g. [Tai98, TE9S]).

Acknowledgments. This work has received support from The Research Council
of Norway (Programme for Supercomputing) through a grant of computing time.
The author also acknowledges the help from Prof. Aslak Tveito, Dr. Hans Petter
Langtangen and Dr. Are Magnus Bruaset.

REFERENCES

[BCLT97] Bruaset A. M., Cai X., Langtangen H. P., and Tveito A. (1997)
Numerical solution of PDEs on parallel computers utilizing sequential
simulators. In et al. Y. . (ed) Scientific Computing in Object-Oriented Parallel
Environment, Springer- Verlag Lecture Notes in Computer Science 1343, pages
161-168. Springer-Verlag.

[BN94] Barton J. J. and Nackman L. R. (1994) Scientific and Engineering C++.
An Introduction with Advanced Techniques and Framples. Addison-Wesley.
[CM94] Chan T. F. and Mathew T. P. (1994) Domain decomposition algorithms.

In Acta Numerica 1994, pages 61-143. Cambridge University Press.

[Dif] Diffpack Home Page. http://www.nobjects.com/Products/Diffpack.

[Lan99] Langtangen H. P. (1999) Computational Partial Differential Equations —
Numerical Methods and Diffpack Programming. Springer-Verlag.

[SBGY96] Smith B. F., Bjgrstad P. E., and Gropp W. (1996) Domain
Decomposition: Parallel Mulltilevel Methods for Elliptic Partial Differential
Fquations. Cambridge University Press.

[Tai98] Tai X.-C. (1998) A space decomposition method for parabolic problems.
Numer. Method for Part. Diff. Equat. 14(1): 27-46.

[TE98] Tai X.-C. and Espedal M. (1998) Rate of convergence of some space
decomposition methods for linear and nonlinear problems. STAM J. Numer.

Anal. 35(4): 1558-1570.

