A Method of Domain Decomposition for

Three-Dimensional Finite Element Elliptic Problems
M. DRYJA*

Abstract. We describe new results on domaln decomposi-
tion methods for second-order 3-D elliptic problems which
recently has beegzobtained Jointly with Olof Widlund. The
original region of the elliptic problem 1s partitioned
into a few or a large number of subreglons .521 by cuts

which intersect each other., In our iterative algorithms
the Dirichlet 3?§ mixed subproblems with Dirichlet data on
the edges of iy are solved. In the case of a large

number of subregions the Dirichlet boundary conditions on
the edges are replaced by dlscrete average values. An
alternative algorithm is based on the plecewise linear
functions defined on the coarse trlangulation. The sub~
problems in these algorithms are independent and may be
golved in parallel.

1, Introduction. In this paper, we will discuss
results on domaln decomposition methods for solving linear
systems of algebraic equations resulting from the finite
element approximation to self-adjoint, second-order 3-D
elliptic problems which recently has been obtained jointly
with Olof Widlund. We will discuss the case when the ori-
ginal region of the elliptic problem is partitioned
into a few or a large number of subregions (2 i

In our iterative algorithms we will solve subproblems
which are the Dirichlet and mixed problems on subregions
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SZi . The boundary conditions for the mixed problems are

of Neumann type except on the edges, the so called wire
basket, where Dirichlet conditions are imposed. These sub-
problems are independent and may be solved in parallel. In
the case of a large number of subregions the Dirichlet
boundary conditions on the wire basket should be modified
by discrete average values. An alternative algorithm 1s
based on the plecewise linear functions defined on the
coarse triangulation. These methods lead to preconditioned
gystems with condition numbers proportional to

(1+logh)? and B(1+10gll) respectively, where H ana h

are parameters associated with the coarse and fine trian-
gulations.

Our results are generalizations of results from 5],
[6} in which 2-D elliptic problems are discussed.

A domain decomposition method for 3-D elliptic
problems has recently been presented in [3] . That method
is also based on the discrete average values on i

and leads to a preconditioned system with a condition
number proportional to H/h. We also note that domain
decomposition methods for 2-D elliptic problems have been
discussed in m papers. For references to the literatu-
re see [1] and [11] .

Throughout this paper C or ¢C will denote a
positive, generic constant independeﬁt of H and h .

2. Statement of problems. We consider the followi
weak form of the Dirichlet problem for second order elllp
tic equations.

For f € 12({)) find a function u & Hg(fl) such that
(20'1) &(U,V) = l(V) ' VE Hg(ﬂ) ’
where {1 18 a bounded region in R3 , and

a(u,v) =g§(i.§§; aij(x)DiuDjv + c(x)uv)dx

and

1(v) = g fv dax .

JeR
Wg assume that the bilinear form a(u,v) is symmetric,
Ho-elliptic and continuous.

The problem (2.1) is solved by a finite element
method with tetrahedral linear elements. To simplify the
presentation, we suppose that is polybedral region.
Let S0 p denote a triangulation of with elements ey

and a parameter h . For a given triesngulation El.h we
define the finite element space th of plecewise linear,

continuous functions and va? shing on 9
Find a function up € Vy ( such that

[
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1
(2.2) alup,vy) = 1(vy) , vy € Vé )

Using & natural basis of the space Vﬁq)(KZ) we rewrite
the problem (2.2) as the linear system

(203) Auh = fh ’

where (Auh,vh)Rn = aluy,vy) (fh,vh)Rn = 1(vy) and n
is the total number of nodal parameters in SL + The
matrix A 1is positive definite and symmetric.

From now on we will identify v, € V£1)(§l) with its
vector representation, We will also dfop the subscript h
for functions in Vﬁq)(fl) .

3. Domain decomposition method. We will describe and
analyze Iterative methods for solving the system (2.3)
when the region {1 1s partitioned into subregions by cuts

which intersect each other. We form an auxiliary triangu-
lation 1 ; of with parameter H (H h). It

congists of tetrahedrons or cubes (macro-elements, sub-
structures) denoted by JSl; . BEach of them 1s the union

of tetrahedrons e, of the original triangulation L, .
We agsume that the triangulations L H and Sl'h of the

region.Sl are regular (see for example [h] y Pe 132).
The subregions SL , of Sl are ordered into

Neumann - (N) and Dirichlet - (D) type regions as follows
in what essentially is a red-black ordering. If two sub-
regions share a face, they must thus be of different typesa
Of course such ordering is avallable only for BO%S_p&rti—
tioning but it can easlly be accomplished. ILet N and

n p denote the union of N-type and D-type subregions.
The faces and edges of .fli are denoted by Fij and
Let P = 'bSZN\'c)Q— and L, =0,U"F.

We represent the matrix A as a 3 x 3 block
matrix of the form

Eiy o

e D = I e %
(3.1) Au = o A_gz hoz|  |w = %
Az 453 Az3] Y3 f3

The matrices 4,44 , A22 and A33 represent the couplings
between pairs of degrees of freedom in (2, £l and

F respectively. A13 and A25 couplings between pairs
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belonging to QD and F, and 1, and F respectively.
It is easy to see that
(3.2) a(u,v) = ap(u,v) + ay(u,v)

where a and ay 8are the restrictions of the bilinear
form ‘%o Y3 D and SlN e The stiffness matrices corres-
ponding to these bilinear form take the form

A A
(3.3 4P = [ 30 ang R Age ‘%g)
Ay A3z A5 A33

Our aim is to solve (3.1) using a method of domain
decomposition with the exact solvers for the subproblems,
Some of our methods will have condition numbers which grow
very slowly (logarithmically) with H/h . In our proofs
we need a number of lemmas.

4, Auxiliary lemmas. We lntroduce the Sobolev space

H1/2(O,H) of functions defined on (0,H), see [7] , [9].
Its norm with weight 1/H 18 of the form

B EH
2
5. ¥l azp, - (gg =L axay
’ o)
H

+ % é v2(x)dx)1/2

We note that the weight factor is natural and that it is
obtained by transforming from an interval of length 1 .
Let (0O,H) be partitioned into subintervals of length h

and let Vh1 (0,H) denote a finite element space of piece
wise linear,continuous functions.
LEMMA 1. PFor any v € vl(;')(o,n),

1/2
(4.2) “v“ﬁ”(o,n) £ o(1s10gp) "/ | v 51/2(0,n)

Proof. It suffices to prove (4.2) under the assumpt-
ion that H = 1. Let G be a triangle O {xy L1,

04{x, {1-x; . We construct a triangulation on G with
mesh size h =(H/h). The function vé;&ﬂ(o,‘l) is given

on [0,1] « In view of Lemma 5.6 from [ there exists an
extenslon such that
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“;lln"(c;) S el 5172(0,1)

The function Vv(x) is in general not a plecewise continu-
ous function. Using the extemsion thegrem for finite
element functions recently proved in E’lo'r we can construct
a plecewise linear, continuous function 4N such that

vhz;':v for 116[0,1] and

“"h”H1(G) 4 c|7| _re

On the other hand, see [2] ’

llvh“ 6 é C(1+log§)1/2 “vh“ 6

Combining these inequalities, we obtain

“ vh“ 6 é C(1+log§)1/2 ”V“ H1/2(O,1)

which proves (4.2).
COROLLARY of LEMMA 1. If there exists at least one
point Q € [0,H] at which v(Q) = O then

@.3) vl oo g S C(1+1°8§m"°(“a1/2(0,n)

for any constant & .
Proof. We have

< & £ 2lvedl
Applying (4.2) we get (4.3).
We now introduce the Sobolev space g/ Z(Fid) of
functions defined on the facea F:LJ of ‘Qi « By the
definition, see [7] , [9] ,

- 12
(1) uvun,,,?_(ri):(S S v
J Fig Py

0,H)

. g } (v(x))2ax)1/2
13

where H 1is the parameter of the coarse triangulation of
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2 .If v is a smooth function on Fi.j with support
contained in Fij , then (4.4) is equivalent to

2
Hoo (Fyy) |

x-y|
Fyg Fig

2
d(x, 9F, )
F 13
iJ
see [7] ’ [9] where d(x,'aFij) denotes the distance
from x to the boundsry ?}Fid of Fyy o The completion
of the smooth functions with support in Fi with respect
to the norm (4.5) is denoted by HOOQ(F ). It can also be
defined by interpolating HO(FiJ) and L2(Fij) i.e.

2
Boo (Fyg) ‘[ o 2 (®y4), I‘z(Fij;_]q/z
gee [8] .
In"the case when F,. 1is a rectangle F=(0,H,)x(0,H,)

the ms (4 4) and (4.5) asre equivalent to the following,
see E9§

2
| v(xqse)-v(Faye)
¥l /20 = X g = 2 hoto,m) dxqdyy +

ek
0O O

2
)”L2(0,31)

(22 et
* S g dx,dy,

o b {xz‘yzlz

Then

(4,6) 1/2

(g2 AN
I‘v‘la1/2(F) ) (Iv‘31/2(3) * HllvllL2(r))

tor v € BV2(®) ana
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(4.7) [lv\l 1/2< ) [VI51/2(F) + I(V;Hq,gz))1/2

for v € Hgo (F) where

Hy
“V(xq’ )“ 12
I(viH,,H,) = S = (0,8 dx, +
0
H, H,
“v(xq. (0,8,) “v( ,12)” 200, )
") TE ) T et
1 1 2
0 0
H,
+ g ezl e 17(0,H,) ax2
Hy—x,
0

LEMMA 2. Let 2 n be a cube or tetrahedron with
faces Fij . Let fi be equal to fij on a fixed face
F13 and zero on the remaining faces as well as on e FiJ
and let £, € Hbo (F ). Then there exists an extension

1 13
u of £, on L, such that u=¢£ on OJfl, and

4 C“fi;)n Zg(/)z

(4.8) uﬁ(ﬂ , &

(Fij)

Proof. We only give a proof for a cube and the case
when H = 1. The proof of the other cases are quite
similar,

In view of the extension theorem, see [9] there
exists an extension u of f such that u = fi on

‘8411 and

4
(4.9) “uuﬂ1<ﬂi) =2 c“fiHHV?(BSZi)
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By the definition of the norm in H/ 209,)

2 -

Il ez, -

(4.10)
|2, (=2, ()] 2 . »
\x=y |7 12(38,)
But
g g |2, -2, ()2 o
s, vq, =P
i i

ds(x)ds(y) +

- S g [£44G0~2,1 )|

x|
Fiq Fiq

de

Biq By

where s8(x) 1s the area element along Fiq o
We assume that fi differs from zero on the face F11 N
Using the inequality (1,3,2,12) from [7] we obtain

% 2
%‘;—_‘r S S [—E-‘L%i—;l)-lz—ds(x)ds(y);é_

Fi1 By

S (fiq(x))2

d(xt B Fi1 )
Fiq

AN

ds(x)

It 18 easy to see that
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(£,.4(x))2
L I %
Fia

ds(x)

Substituting these inequalities into (4.10), we obtain

I £, || 21/2(3&1) “fm “ 1/2(1,11)

which proves (4.8) in view of (4,9) and Friedrichs in-
equality.

We next conslder a simllar question for finite
element functions.

LEMMA 3, Let 12.1 be a cube or tetrahedron with

faces Fi . Let fih be a finite element function belong
ing to (1)(1312.) which is equal to 1Jh on the
fixed face Fij and zero on the remaining faces as Iell
as on iaFid » Then there exists an extension uy € Vh

of f,, onto .fli such that wu, = f4, on 75fl1 and

) e Hy2 2
(4.11) luhl (p_) & c(1+logp) llf13h+0(|lﬂ1/2(1,u)

where £ 1is any constant,
Proof. It suffices to prove (4,11) under the assumpt-
ion that H = 1. We will also only give a proof for the

case of a cube.
Suppose that fih differes from zero on the face F11

belonging to the (x ,12)-p1ane. As a consequence of Lemma
2 there exists U 6 H CQ ) such that W =f,, on 35,

vl (QRLCH 11”21

However in general u & V(1)(S7_ ). Using an extension
theorem for the finite element functions, see [ﬂd] ) We
can construct uhé Vh (_Q. ) such that u, = o on?ﬂ
and

410
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< ~
\hlﬁ(ﬂ) - ll’](ﬂ)
Hence
2 L 2
(4.12) Iuhln“(&li) = C Hfi1\\Hgéa(Fi1)

%e ngw estimate the right band side of (4.12), By
4,7),

2
4 c(l:t'iqlﬁq/a(F )+ T3

“ 11\\ 1/2( 11) i1

Denote the first term of I(fi1;1,1) by Iq(f11)° Let Ay

i=1,..+,p » denote triangles with one or two vertices on
X, = 0. Let di be the distance to the X, axis from a

vertex of A‘i y which does not belong to x, = O, and
is closer to x, = O. We represent Iq(fiq) as

a 1
S [[£54Cxqs )l[ 254 Cxq0e
0

L
11(f dx, + dx

X

iﬂ)

.Y
1]

1

I

149 (2390 + Tp(2y0)

where d = inf di o Using for each A i the mean value

theorem, the inverse inequality and the fact that the
triangulation of Fij is regular, we straightforwardly

show that

L
I (g) & C 08¢, | £54Cxq000 1|2 201
It 1s also easy to see that
(f )4~ ¢ log() max Loa(Xaye)
12V 42 E dx ‘l 11 5t ll 12(0,1)

Hence
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I,(£.4) é’C(1+log§) mix Uf11<11:'

)| 2
, |1,2(0,’1)

We now 8pply Lemma 1 with respect to X, and obtain
1

I (fi,]) c(1+1og5) S“fiq(-,xz) +o(\\§1/2(0’1) ax, &

< Hy2 2

= c(1+logp) “fm:,oQ“H,W_(F )
i1

where & is any constant. In the similar way we estimate

the remaining terms of I(f 1137 1). We thus obtain, by
addition,

H\2 2
234 2 1/2 (g é cCre10g)? | £, 1+ oL | 71/2(p. )
Hoo (F4q) 13

which proves (4.11) for a cube.

Let Eih denote the set of nodal points belonging
to the wire basket E, of S,

LEMMA 4, Let oQi be the average value of v on a
cube or tetrahedron _ﬁLi « Then for any v & Vé (IZ )

(4.43) B T (v(x) - L)% £ cCrslogp)|

2
vl1
H'(S1)
xEEih i

holds.
Proof. It is easy to see that

(4.14) h (v(x) - OCi)z__é. C Zj: § (v(X)-&i)edB(x)

ih

Let _fl be a cube with a face Fij = (0, )2 1in the
(x1 ’12 )‘pl&lle « Then

1

H
(v(x)~ 0(,1)2dx :__4_ C max S (v(x)- 0(1)2d12
E X
0

1J

Applying Lemma 1 we get

53
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S (v(x) - d,i)zdx :.4__ C(1+log%) n v- o(,in §1/2(F ,
By 14

Further

Y - 2 .é V2
| O('1“}1«/.2(1,13) = |H1(§11>

in view of the trace theorem, see[:9] s and Poincare’s
inequality. Thus

H 2
S (v(x) - cai)de éé C(1+logE)‘v| 1.Q
- - TH (34D
i3
Substituting this into (4.14) we get (4.13) for a cube,
The proof for a tetrahedron is quite similar,

5. Preconditioners. We represent the bilinear form
alu,v) defined for u,v € ng as

a(u,v) = ap(u,v) + ag(u,v)

where aD(u,v) and ay(u,v) are the restrictions of

a(u,v) to j?.D and JQ.N .
We introduce an auxiliary function IHv as a global

harmonic extension of v Zfrom the wire basket E as
follows.,.

We rewrite the matrix A, see (3.1), as a 2x2 block
matrix of the form

A= Ly 1
T,
Ko Ly

Here the matrices A,, and L,, represent the couplings
between pairs of degree of freedom in S) \E and E
respectively. The function IHV is defined as the
solution of

with ?é:/given on E. In other words IHv is the
discrete harmonic extension (with respect to x11) of v
given on E.



3-D FINITE ELEMENT ELLIPTIC PROBLEMS 55

A preliminary preconditioner for a(v,v) 1is intro-
duced as

b(v,v) = aD(v—va,v-va) + an(v—va,V+va) + a(fﬁv,fﬁv)

Note that
a(va,va) é; a(w,w)

for arbitrary w & Vﬁq)(Sl) equal to va on E since
the function va is the discrete harmonic function and

therefore the minimal extension of the data on E. Using
this fact and the triangle inequality we get

% b{v,v) é; a(v,v) ﬁ; 2 blv,v)

We will modify the bilinear form b(v,v). From now on, we
will consider only the case when f1 O in the system

(3.1).
Such a reduction can be accomplished at_ the expense of
solving the Dirichlet subproblems on Q2 D * This means

that the first component u, of the solution u= (u1 u2,u5)
18 the discrete harmonic function in JlQD (with respect
to A444), see (3.1).

We now show that

(5.1) aD(v-va,v-va) é?C(ﬂ+log§)2aN(v—va,v-va)

under the assumption that v 1is ? discrete harmomnic
function in Jl.D « Let w=v - Iwv . Note that w 1is

also a discrete harmonic function in .£2.D o« This implies
that

(5.2) apmw) & ap(3,

for arbitrary w é:Vh1)(£l) restricted to _Cl and
equal to w on SZ. . Furthermore

(5.3) aD(;,;) 4 + ay(w,w))

C(\w 1(fl

By definition,

2
(54> 4] H'(82,) n-g I (.Q )

Choosing w according to Lemma 3 we get
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~2 L Hy2 L2
\w £ c(1+logy) Z; |w | /2

\Hq(ﬂi) = B 35 (Fyy)
Using the trace theorem, see [9] , and Poincare in-
equality we obtain

%2 £ c(1+10gd)? w|?
Mg,y = e F | ‘n“(ﬂ_j)
where _:fl 3 qspotes a N-type subregion with face

= t
Fij = jl_i N JﬂLj . Summing these estimates with respec

to 1 &and substituting the resulting inequality into
(5.4) we get

~ H\2 2
\W\§1C§lb) éé c(1+logg) \‘\Hq(fln)

This implies (5.1) in view of (5.3) and (5.2).
We return to the preliminary preconditioner b(v,v).
Using (5.1) we see that

c(v,v) = ag(v-Ipv,v-2.v) + a(fyv,fpv)

can be used as a preconditioner for a(v,v). It is easy to
see that

%c(v,v) é; a(v,v) é; C(ﬂ+log§)2 c(v,v)

However when using this preconditioner one needs to
compute I\ which 18 an expansive procedure, Therefore

we further modi c(v,v). We will discuss two cases. In
the first case consists of a few subregions and in
the other case we have & large number,

We start with the first case, Let

ﬁE(V,v) = ; h F v2(x)
ih

where Eih is the set of nodal points on E1 » Applying
Lemma & and using the fact that va is a discrete
barmonic extension from E , we show that

(5.5) Co<§’1 ﬁE(V.V)éé a(va,va) é;01 ﬁE(v,v)

where 6: (1 + B-2)(1 + log(H/h)).
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We now introduce a function IHv as a particular
local harmonic extension (with respect to aN(v,w) and
aD(v,w)) of v from E; . It is defined as follows.
First we extend v given on E,; %o N-type regions 0 i

by solving the mixed problems with Neumann boundary
conditions on the faces of _Q.i . Then we extend the

result to D-type regions by solving the obvious Dirichlet
problems.
Using the function IHv we have

aN(v—va,v-va) §%2aN(v—IHv,v—IHv) + Czﬁx(v,v)

in view of (5.5) and the fact that Igv is minimal
extension in N~-type regions of the data on Ei + Thus we
can take

a(v,v) = ay(v-Iyv,v-I v) + Bo(v,v)

as a preconditioner for a(v,v). We have proved the
following result
THEOREM 1. Let the triangulation .Sl and _Qh

of {L be regular, Then for the discrete harmonic functions
in
D

Cocf-qd(v,v) < alv,v) < Cq(1+log§)2d(v.v)

holds, where & = (1 + E2)(1 + log(H/h)).
We now describe briefly an algorithm for solving the
resulting system corresponding to d(v,v):

au,v) = G(v) , v € ng)(fl) .

ALGORITEM 1.
1 Find w = u - IHu by solving

aN(" \Fk) = G(\ek)

where \¢ , are the natural basis functions of vfl”(Q_)
associated with nodal points xéESY_N\\E . Note that w=0
on E and aN(w,IE}Fk) = 0 by the definition of Igv .

We find the solution of this system by solving the sub-

problems on individual N-type regions with a homogeneous

Dirichlet boundary condition on the wire basket E. Thease

subproblems are independent and may be done in parallel.
2. Solve
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ﬁE(u' \fk) = G(%)k) - an(') \Pk)

where the x are basis functions associated with xtE,
3. Solve

ay(Iqu, ‘P ) =0

where the \P , are associated with x €'§2.N\\E .
Here IHu = u 1is given on E .
4, Compute u = w + IHu .

In an entire algorithm for solving the problem we
need one more point, i.e. an extension u to the D=type
region to compute the residual vector.

We now consider the case with a large number of sub-
regions. Two preconditioners will be described. Let

BE(v,v) = ; h F (v(x) - ?1)2

ih

where Vi is the discrete average value of v on Ky ,

i.e.
- 1
V, = = V(X)
o Eih

and ny is the number of nodal points on E1 « Note that

(v(x) - 7,02 £ (v(x) - {4)°
s s e %

for any constant cili « Using this, Lemmas 4 and 1, and
replacing fav by Igv we can prove that

02(1+log%)°1BE(v,v) é-a(va,va) §503(1+log%)2BE(v,v)

—_—

cf. (5.5). Thus we have a new preconditioner for a(v,v)
of the form

e(v,v) = an(v-IHy,v-IHv) + (1+log§)'1BE(v,v)
THEOREM 2. Under the assumption of Theorem 1,

C4e(v,v) f; al(v,v) é; 05(1+log§)3 e(v,v) .

An algorithm for solving the equation
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e(u,v) = G(v) , v € V1(11)(S7_)

differes from Algorithm 1 in the second step only.
ALGORITHM 2
1. The same gs in Algorithm 1
2. a) Find w = u(x) - @; by solving

B(W, \py) = (G(P ) = ag(w,1p,))(1+1ogp)

where the \¢, are associated with x€ E .,

b) Compute ﬁi using the algorithm suggested
recently in [3] .

c) Compute u(x) = w + ﬁi on E .

3« The same as in Algorithm 1 .
4, Compute u = w + IHu .

Finally we consider a preconditioner with plecgwise
linear functions on the coarse triangulation. Let Igv

be the piecewise linear interpolant of v using thg verti
ces of the coarse triangulation "Q’H o Note that IHv is

& discrete harmonic extension from E .
We introduce a bilinear form

g(v,v) = aN(v-IHv,v-IHv) +'§E(v,v) + a('fﬂv,'fﬂv)

where
~ T\
Bp(v,v) = h g (v(x) = Igv)
; ih

Using Lemna 1 a.nd Leq%a 4 and the properties of the

functions one can be proved the following
estimatess

el 5 12(0,H) S A 2(0,8) Blv lH"/2(o B)"
and

a(fnv,fnv) Lc g(h-logg)a(v,v)

Using these we can prove the following result
THEOREM 3, Under the assumptions of Theorem 1

|
C4<§ 1g(v,v) < a(v,v) < Cs(1+log%)2g(v,v)

holds, cf,‘ = (H/h)(1+1log(H/h)).
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This result shows that this type of algorithm 1s far
from optimal if H/h 1s large. We note that the corres-
ponding alg rﬁthm works quite well for problems in the
plane, cf. E

An algorithm for solving

g(u,v) = G(v)

takes the form
ALGORITHM 3
1. The same ag in Algorithm 1.

2, Find w = u - Tﬁu by solving

Br(W, i) = (G(\PL) = ag(w,\p))

where the \e x Aare associated with x & EN\NP and P

is the set of the vertices of the subdomains.
3, Solve

s (T, Ty Yy = 600y )y (w0, )Bp(Rfy Ty \p))

where the \0, are associated with x EP.,
4, Compute u = w + IHu on Ei o
5. Solve aN(I u,\ok) =0

where the P, are associated with x é_Q_ \E .
6. Compute u = w + IHv .
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